
© SERG Software Design (UML)

Software Design

Static Modeling using the

Unified Modeling Language

(UML)

Material based on

[Booch99, Rambaugh99, Jacobson99, Fowler97, Brown99]

© SERG Software Design (UML)

Classes

ClassName

attributes

operations

A class is a description of a set of

objects that share the same attributes,

operations, relationships, and semantics.

Graphically, a class is rendered as a

rectangle, usually including its name,

attributes, and operations in separate,

designated compartments.

© SERG Software Design (UML)

Class Names

ClassName

attributes

operations

The name of the class is the only required

tag in the graphical representation of a

class. It always appears in the top-most

compartment.

© SERG Software Design (UML)

Class Attributes

Person

name : String

address : Address

birthdate : Date

ssn : Id

An attribute is a named property of a

class that describes the object being modeled.

In the class diagram, attributes appear in

the second compartment just below the

name-compartment.

© SERG Software Design (UML)

Class Attributes (Cont’d)

Person

name : String

address : Address

birthdate : Date

/ age : Date

ssn : Id

Attributes are usually listed in the form:

 attributeName : Type

A derived attribute is one that can be

computed from other attributes, but

doesn’t actually exist. For example,

a Person’s age can be computed from

his birth date. A derived attribute is

designated by a preceding ‘/’ as in:

 / age : Date

© SERG Software Design (UML)

Class Attributes (Cont’d)

Person

+ name : String

address : Address

birthdate : Date

/ age : Date

- ssn : Id

Attributes can be:

 + public

 # protected

 - private

 / derived

© SERG Software Design (UML)

Class Operations

Person

name : String

address : Address

birthdate : Date

ssn : Id

eat

sleep

work

play

Operations describe the class behavior

and appear in the third compartment.

© SERG Software Design (UML)

Class Operations (Cont’d)

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)

getPhone (n : Name, a : Address) : PhoneNumber

You can specify an operation by stating its signature: listing the

name, type, and default value of all parameters, and, in the case of

functions, a return type.

© SERG Software Design (UML)

Depicting Classes

Person

name : String

birthdate : Date

ssn : Id

eat()

sleep()

work()

play()

When drawing a class, you needn’t show attributes and operation

in every diagram.

Person

Person

name

address

birthdate

Person

eat

play

Person

© SERG Software Design (UML)

Class Responsibilities

A class may also include its responsibilities in a class diagram.

A responsibility is a contract or obligation of a class to perform

a particular service.

SmokeAlarm

 Responsibilities

-- sound alert and notify guard station

 when smoke is detected.

-- indicate battery state

© SERG Software Design (UML)

Relationships

In UML, object interconnections (logical or physical), are

modeled as relationships.

There are three kinds of relationships in UML:

• dependencies

• generalizations

• associations

© SERG Software Design (UML)

Dependency Relationships

CourseSchedule

add(c : Course)

remove(c : Course)

Course

A dependency indicates a semantic relationship between two or

more elements. The dependency from CourseSchedule to

Course exists because Course is used in both the add and

remove operations of CourseSchedule.

© SERG Software Design (UML)

Generalization Relationships

Person
A generalization connects a subclass

to its superclass. It denotes an

inheritance of attributes and behavior

from the superclass to the subclass and

indicates a specialization in the subclass

of the more general superclass.
Student

© SERG Software Design (UML)

Generalization Relationships (Cont’d)

Student

UML permits a class to inherit from multiple superclasses,

although some programming languages (e.g., Java) do not permit

multiple inheritance.

TeachingAssistant

Employee

© SERG Software Design (UML)

Association Relationships

If two classes in a model need to communicate with each other,

there must be link between them.

An association denotes that link.

Instructor Student

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can indicate the multiplicity of an association by adding

multiplicity adornments to the line denoting the association.

The example indicates that a Student has one or more

Instructors:

Instructor Student
1..*

© SERG Software Design (UML)

Association Relationships (Cont’d)

The example indicates that every Instructor has one or more

Students:

Instructor Student
1..*

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can also indicate the behavior of an object in an association

(i.e., the role of an object) using rolenames.

Instructor Student
1..* 1..*

learns from teaches

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can also name the association.

Team Student
membership

1..* 1..*

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can specify dual associations.

Team Student

member of

1..*

president of 1 1..*

1..*

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can constrain the association relationship by defining the

navigability of the association. Here, a Router object requests

services from a DNS object by sending messages to (invoking

the operations of) the server. The direction of the association

indicates that the server has no knowledge of the Router.

Router DomainNameServer

© SERG Software Design (UML)

Association Relationships (Cont’d)

Associations can also be objects themselves, called link classes

or an association classes.

Warranty Product

Registration

modelNumber

serialNumber

warrentyCode

© SERG Software Design (UML)

Association Relationships (Cont’d)

A class can have a self association.

LinkedListNode

next

previous

© SERG Software Design (UML)

Association Relationships (Cont’d)

We can model objects that contain other objects by way of

special associations called aggregations and compositions.

An aggregation specifies a whole-part relationship between an

aggregate (a whole) and a constituent part, where the part can

exist independently from the aggregate. Aggregations are

denoted by a hollow-diamond adornment on the association.

Car

Engine

Transmission

© SERG Software Design (UML)

Association Relationships (Cont’d)

A composition indicates a strong ownership and coincident

lifetime of parts by the whole (i.e., they live and die as a

whole). Compositions are denoted by a filled-diamond

adornment on the association.

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *

© SERG Software Design (UML)

Interfaces

An interface is a named set of

operations that specifies the behavior

of objects without showing their inner

structure. It can be rendered in the

model by a one- or two-compartment

rectangle, with the stereotype

<<interface>> above the interface

name.

<<interface>>

ControlPanel

© SERG Software Design (UML)

Interface Services

Interfaces do not get instantiated.

They have no attributes or state.

Rather, they specify the services

offered by a related class.

<<interface>>

ControlPanel

getChoices : Choice[]

makeChoice (c : Choice)

getSelection : Selection

© SERG Software Design (UML)

Interface Realization Relationship

<<interface>>

ControlPanel

VendingMachine

A realization relationship

connects a class with an

interface that supplies its

behavioral specification. It is

rendered by a dashed line with

a hollow triangle towards the

specifier.

specifier

implementation

© SERG Software Design (UML)

Interfaces

A class’ interface can also be

rendered by a circle

connected to a class by a

solid line.

File

outputStream

inputStream

FileWriter
{file must not be locked}

FileReader
{file must exist}

© SERG Software Design (UML)

Parameterized Class

LinkedList

T

T

1 .. *

A parameterized class or

template defines a family of

potential elements.

To use it, the parameter must be

bound.

A template is rendered by a small

dashed rectangle superimposed on

the upper-right corner of the class

rectangle. The dashed rectangle

contains a list of formal parameters

for the class.

© SERG Software Design (UML)

Parameterized Class (Cont’d)

LinkedList

T

T

1..*

Binding is done with the <<bind>>

stereotype and a parameter to

supply to the template. These are

adornments to the dashed arrow

denoting the realization

relationship.

Here we create a linked-list of

names for the Dean’s List.

DeansList

<<bind>>(Name)

© SERG Software Design (UML)

Enumeration

<<enumeration>>

Boolean

false

true

An enumeration is a user-defined

data type that consists of a name and

an ordered list of enumeration

literals.

© SERG Software Design (UML)

Exceptions

<<exception>>

KeyException

<<exception>>

SQLException

<<exception>>

Exception

getMessage()

printStackTrace()

Exceptions can be modeled

just like any other class.

Notice the <<exception>>

stereotype in the name

compartment.

© SERG Software Design (UML)

Packages

Compiler

A package is a container-like element

for organizing other elements into

groups.

A package can contain classes and

other packages and diagrams.

Packages can be used to provide

controlled access between classes in

different packages.

© SERG Software Design (UML)

Packages (Cont’d)

Classes in the FrontEnd package and classes in the BackEnd

package cannot access each other in this diagram.

FrontEnd BackEnd

Compiler

© SERG Software Design (UML)

Packages (Cont’d)

Classes in the BackEnd package now have access to the classes

in the FrontEnd package.

FrontEnd BackEnd

Compiler

© SERG Software Design (UML)

Packages (Cont’d)

JavaCompiler

We can model generalizations and

dependencies between packages. Compiler

Java

© SERG Software Design (UML)

Component Diagram

Component diagrams are one of the two kinds of diagrams

found in modeling the physical aspects of an object-oriented

system. They show the organization and dependencies

between a set of components.

Use component diagrams to model the static

implementation view of a system. This involves modeling

the physical things that reside on a node, such as

executables, libraries, tables, files, and documents.

 - The UML User Guide, Booch et. al., 1999

© SERG Software Design (UML)

Component Diagram

collision.dll

driver.dll
version = 8.1.3.2

path.dll

IDrive

ISelfTest

Here’s an example of a component

model of an executable release.

[Booch,99]

© SERG Software Design (UML)

Component Diagram

“parent” “parent”

signal.h
version = 3.5

signal.h
version = 4.0

signal.h
version = 4.1

signal.cpp
version = 4.1 interp.cpp

irq.h device.cpp

Modeling source code.

[Booch, 99]

© SERG Software Design (UML)

Deployment Diagram

Deployment diagrams are one of the two kinds of diagrams

found in modeling the physical aspects of an object-oriented

system. They show the configuration of run-time processing

nodes and the components that live on them.

Use deployment diagrams to model the static deployment

view of a system. This involves modeling the topology of the

hardware on which the system executes.

 - The UML User Guide, [Booch,99]

© SERG Software Design (UML)

Deployment Diagram

A component is a physical unit of implementation with well-

defined interfaces that is intended to be used as a replaceable

part of a system. Well designed components do not depend

directly on other components, but rather on interfaces that

components support.

 - The UML Reference Manual, [Rumbaugh,99]

spell-check

Dictionary
synonyms

component

interfaces

© SERG Software Design (UML)

Deployment Diagram

Update Transactions

Account

[Rumbaugh,99]

ATM-GUI

<<database>>

component

realization dependency

interface

usage dependency

stereotyped
component

© SERG Software Design (UML)

Deployment Diagram

reservations

<<database>>

meetingsDB

:Scheduler

server:HostMachine

clientMachine:PC

:Planner

Deployment diagram

of a client-server

system.

[Rumbaugh,99]

<<direct channel>>

© SERG Software Design (UML)

Software Design

Dynamic Modeling using the

Unified Modeling Language

(UML)

© SERG Software Design (UML)

Use Case

“A use case specifies the behavior of a system or a part of a

system, and is a description of a set of sequences of actions,

including variants, that a system performs to yield an observable

result of value to an actor.”

 - The UML User Guide, [Booch,99]

“An actor is an idealization of an external person, process, or

thing interacting with a system, subsystem, or class. An actor

characterizes the interactions that outside users may have with

the system.”

 - The UML Reference Manual, [Rumbaugh,99]

© SERG Software Design (UML)

Use Case (Cont’d)

Register for Courses
A use case is rendered as an ellipse

in a use case diagram. A use case is

always labeled with its name.

© SERG Software Design (UML)

Use Case (Cont’d)

An actor is rendered as a stick

figure in a use case diagram.

Each actor participates in one or

more use cases.

Student

© SERG Software Design (UML)

Use Case (Cont’d)

Student Person

Actors can participate in a generalization relation with other

actors.

© SERG Software Design (UML)

Use Case (Cont’d)

Register for Courses

Actors may be connected to use cases

only by associations.

Student

© SERG Software Design (UML)

Use Case (Cont’d)

Student

Billing System

Registrar

Register for Courses

Here we have a Student interacting with the Registrar and the

Billing System via a “Register for Courses” use case.

© SERG Software Design (UML)

State Machine

“The state machine view describes the dynamic behavior of

objects over time by modeling the lifecycles of objects of each

class. Each object is treated as an isolated entity that

communicates with the rest of the world by detecting events and

responding to them. Events represent the kinds of changes that

objects can detect... Anything that can affect an object can be

characterized as an event.”

 - The UML Reference Manual, [Rumbaugh,99]

© SERG Software Design (UML)

State Machine

An object must be in some specific state at any given time during

its lifecycle. An object transitions from one state to another as the

result of some event that affects it. You may create a state

diagram for any class, collaboration, operation, or use case in a

UML model .

There can be only one start state in a state diagram, but there may

be many intermediate and final states.

© SERG Software Design (UML)

State Machine

start state final state

simple state

concurrent composite state

sequential composite state

© SERG Software Design (UML)

State Machine

selecting

verifying

downloading

checking schedule

download course offerings

make a course selection

verify selection

check schedule

select another course

make a different selection

unscheduled

scheduled

sign schedule

© SERG Software Design (UML)

Sequence Diagram

A sequence diagram is an interaction diagram that emphasizes

the time ordering of messages. It shows a set of objects and the

messages sent and received by those objects.

Graphically, a sequence diagram is a table that shows objects

arranged along the X axis and messages, ordered in increasing

time, along the Y axis.

 - The UML User Guide, [Booch,99]

© SERG Software Design (UML)

Sequence Diagram

An object in a sequence diagram is rendered

as a box with a dashed line descending from it.

The line is called the object lifeline, and it

represents the existence of an object over a

period of time.

an Order Line

© SERG Software Design (UML)

Sequence Diagram

an Order Line a Stock Item

[check = “true”]

 remove()

check()

Messages are rendered as horizontal

arrows being passed from object to

object as time advances down the

object lifelines. Conditions (such as

[check = “true”]) indicate when a

message gets passed.

© SERG Software Design (UML)

Sequence Diagram

an Order Line a Stock Item

[check = “true”]

 remove()

check()

Notice that the bottom arrow is different.

The arrow head is not solid, and there is

no accompanying message.

This arrow indicates a return from a

previous message, not a new message.

© SERG Software Design (UML)

Sequence Diagram

an Order a Order Line

* prepare()
An iteration marker, such as * (as

shown), or *[i = 1..n] , indicates

that a message will be repeated as

indicated. Iteration
marker

© SERG Software Design (UML)

an Order Entry

window
an Order an Order Line a Stock Item

A Reorder

Item

A Delivery

Item

new

[check = “true”]

 new

[needsToReorder = “true”]

needsToReorder()

[check = “true”]

 remove()

check()

* prepare()

prepare()

Object

Message

Iteration

Return

Creation

Condition

Self-Delegation

[Fowler,97]

© SERG Software Design (UML)

Collaboration Diagram

A collaboration diagram emphasizes the relationship of the

objects that participate in an interaction. Unlike a sequence

diagram, you don’t have to show the lifeline of an object

explicitly in a collaboration diagram. The sequence of events are

indicated by sequence numbers preceding messages.

Object identifiers are of the form objectName : className, and

either the objectName or the className can be omitted, and the

placement of the colon indicates either an objectName: , or a

:className.

© SERG Software Design (UML)

Collaboration Diagram

: Order Entry Window

: Order

: Order Line

:Delivery Item

: Stock Item

:Reorder Item

1: prepare()

2*: prepare() 3: check()

4: [check == true] remove()

6: new 7: [check == true] new

5: needToReorder()

[Fowler,97]

Self-Delegation

Object

Message

Sequence Number

© SERG Software Design (UML)

Collaboration Diagram
Sequence Diagram

Both a collaboration diagram and a sequence diagram derive

from the same information in the UML’s metamodel, so you can

take a diagram in one form and convert it into the other. They

are semantically equivalent.

© SERG Software Design (UML)

Activity Diagram

An activity diagram is essentially a flowchart, showing the

flow of control from activity to activity.

Use activity diagrams to specify, construct, and document the

dynamics of a society of objects, or to model the flow of

control of an operation. Whereas interaction diagrams

emphasize the flow of control from object to object, activity

diagrams emphasize the flow of control from activity to

activity. An activity is an ongoing non-atomic execution

within a state machine.

 - The UML User Guide, [Booch,99]

© SERG Software Design (UML)

[Fowler,97] Receive
Order

Authorize

Payment

Check

Line

Item

Cancel
Order

Assign to

Order

Reorder

Item

Dispatch

Order

[failed]

[succeeded] [in stock]

*
for each line

item on order

[need to

reorder]

[stock assigned to
all line items and

payment authorized]

Synchronization Condition

Multiple Trigger

© SERG Software Design (UML)

References

[Booch99] Booch, Grady, James Rumbaugh, Ivar Jacobson,

The Unified Modeling Language User Guide, Addison Wesley, 1999

[Rambaugh99] Rumbaugh, James, Ivar Jacobson, Grady Booch, The Unified

Modeling Language Reference Manual, Addison Wesley, 1999

[Jacobson99] Jacobson, Ivar, Grady Booch, James Rumbaugh, The Unified

Software Development Process, Addison Wesley, 1999

[Fowler, 1997] Fowler, Martin, Kendall Scott, UML Distilled

(Applying the Standard Object Modeling Language),

Addison Wesley, 1997.

[Brown99] First draft of these slides were created by James Brown.

