Lists in Python

What Is a List?

* An ordered set of values:

— Ordered: 1st, 2nd 3rd

— Values: can be anything, integers, strings, other lists
» List values are called elements.

« A string is an ordered set of characters so it is “like”
a list but not exactly the same thing.

Create a new LIst:

« Assignment:

x =[1,5,eg9’,[2,3]]

A couple of integers, a string and
a “nested” list, all in the same list.

« Calling the range() function:

y =range(5) <+—range(a) returns all the integers from 0 to a-1
print y
[1, 2, 3, 4]

y =range(1,5) «—range(a,b) returns all the integers

printy from ato b, including a, excluding b.
[1, 2, 3, 4]

y =range(1,15,8)——range(a,b,c) returns all the integers

printy a, atc, at2c, ...up to b, including a, excluding b.
[1, 2, 3, 4]

The Empty List

x=[]

 The empty list is usually used to initialize a list
variable but not give it any useful elements.

Accessing Elements:

» List elements are accessed via integer indexes

starting at O and working up.

numbers =[3, 87, 43]
print numbers[1], numbers[2], numbers[0]
87433

Xx=3
print numbers[x-2]
87

Print numbers[1.0]
TypeError: sequence index must be integer

print numbers[3]
TypeError: list index out of range

print numbers[-1] # a negative index counts back
3 # from the end of the list
#index -1 is the last element

print numbers[-3]
TypeError: list index out of range

Accessing Many Elements:

* By index value, one at a time (called list traversal)

list of a known size
horsemen = [‘'war’, ‘famine’, ‘pestilence’, ‘death’]
=0
while i < 4:
print horsemen|i]
i=i+1

or if you don’t know how long the list is
=0
length = len(horsemen) <
while i < length:
print hors n[i]

always safer to use
len as an upper bound

i=i+1
war always | <length;
famine never | <=length
pestilence

death

List Membership:

* You simply ask if a value is “in” or “not in” a list.
« This is always a True/False question.

horsemen = [‘'war’, ‘famine’, ‘pestilence’, ‘death’]
if ‘debauchery’ in horseman:
print ‘There are more than 4 horsemen of the apocolipse.

print ‘debauchery’ not in horsemen
1

Loop Operator for Lists

 We have already seen that a while-loop can be used
to “traverse” a list.

* There is also a special for-loop notation.

horsemen = [‘'war’, ‘famine’, ‘pestilence’, ‘death’]
for horseman in horsemen:
p¥nt horseman

a different variable

« Exercise: Print out(z%:list of ten Os and 1s.

for x In range
print x%2

List Operations:
« Add two lists:

a=[1, 2, 3]

b =[4,5, 6]
c=a+b
print c

[1, 2, 3,45, 6]

* Repeat a list many times:
a=[1,2,3]
print a*3
[1,2,3,1,2,3,1,2,3]

« Exercise: Create a list of 20 zeros.

zeros =[0]*20

List Slices:

e Sometimes you just want a sub-list (slice) of a list.

list[a:b] means
list[a], list[a+1], ..., list[b-1]

all list elements with indexes from ato b;
#including a and excluding b

vowels = [‘a’, ‘e’, ‘i’, ‘0’, ‘U’]
print vowels[2:4]
[‘i!, io’]

how do you print out the last element?
print vowels[2:]
[ii!, io’, iu!]

« Exercise: What does vowels[:3] mean?

1 J 1 J (4]

[a’, ‘e, T]

Exercise:

« What does [:] mean?

>>> print vowels(:]
[‘a!, ie!, ‘i!, io!, iu,]

Lists are Mutable (Their values can
change):

fruit = [‘apple’, ‘orange’, ‘pear’]
fruit[1] = “fig’

print fruit

[‘apple’, fig’, ‘pear’]

« However it gets trickier when you try to add
something to a list and not just replace something . .

List Slices Used to Modify a List:

Suppose you are keeping an ordered list:

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

And you want to add kate. Assignment doesn’t work!
names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]
names|2] = ‘kate’

print names
[‘adam’, ‘carol’, ‘kate’, ‘margot’, ‘phil’]

You can add an element by squeezing it into an
empty slice between two list elements:

na = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]
/:[22] = ‘kate’
print names

Starting at index 2 [‘adam’, ‘carol’, ‘henry’, ‘kate’, ‘margot’, ‘phil’]
but not including 2;
ie, empty

List Deletion:

Using the del operator

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]
del names|[3]

print names

[‘adam’, ‘carol’, ‘henry’, ‘phi

Replacing an element with an empty list

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]
names[3:4] =[]

print names
[‘adam’, ‘carol’, ‘henry’, ‘phil’]

Deleting slices

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]
del names[1:4]

print names
[‘adam’, ‘phil’]

Objects and Values:

 Remember:

Xx=3
y=3

printid(x), id(y)
135045528 135045528

« So memory looks like:

 >
/

« Two places in memory called x and y, both pointing
to a place with a 3 stored In it.

Lists, Objects and Values

e Lists are different:

« So this time the memory state picture is:

Lists, Objects and Values

 However, if we use assignment:

« So this time the memory state picture is:

Aliasing

 However, if we assign one variable to another:

« So this time the memory state picture is:

 More importantly, changing b also changes a

Lists are like:

 Money:

 Or also Credit Cards:

\.
/

Cloning a List:

« Cloning means making an exact but separate copy:
* Not Cloning:

a=/[1,2,3]
b=a

printid(a), id(b)

135023431 135023431
 Cloning:
a=[1,2,3]
b=a[:] # slices are always separate lists

printid(a), id(b)
135023431 13502652

List Parameters:

« We create a function and we pass a list as its

argument.

def head(lst): # returns the first element of a list
return Istf0] # list remains unc

_main__

Ist

numbers

Changing List Arguments:

def tail(Ist):
return Ist[1:]

numbers =[1,2,3]
rest = tail(numbers)

print numbers
[1,2,3]

print rest
[2,3]

def deleteHead(lst):
del Ist[0O]

numbers = [1,2,3]
deleteHead(numbers)
print numbers

[2,3]

Lists and Strings:

The String module has very useful list functions.
Suppose we have

‘The rain in Spain falls mainly in the plane’

And we want

[‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]

There is a string function that will split up a string
Into a list of tokens.

str = ‘The rain in Spain falls mainly in the plane’
tokens = string.split(str)
print tokens
[‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]

Lists and Strings:
* The opposite to string.split() is string.join().

tokens = [‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]
str = string.join(tokens,* ¢

print str

‘The rain in Spain falls mainl}in the plane’

join() will join tokens with whatever separator
you wish to use. In this case the separator is
a space ‘ ‘.

