
Lists in Python

Guide to Programming with Python

What is a List?

• An ordered set of values:

– Ordered: 1st, 2nd, 3rd, …

– Values: can be anything, integers, strings, other lists

• List values are called elements.

• A string is an ordered set of characters so it is “like”

a list but not exactly the same thing.

Guide to Programming with Python

Create a new List:

• Assignment:

• Calling the range() function:

x = [1,5,’egg’,[2,3]]

A couple of integers, a string and

a “nested” list, all in the same list.

y = range(5)

print y

[1, 2, 3, 4]

range(a) returns all the integers from 0 to a-1

y = range(1,5)

print y

[1, 2, 3, 4]

range(a,b) returns all the integers

from a to b, including a, excluding b.

y = range(1,15,2)

print y

[1, 2, 3, 4]

range(a,b,c) returns all the integers

a, a+c, a+2c, …up to b, including a, excluding b.

Guide to Programming with Python

The Empty List

• The empty list is usually used to initialize a list

variable but not give it any useful elements.

x = []

Guide to Programming with Python

Accessing Elements:

• List elements are accessed via integer indexes

starting at 0 and working up.
numbers = [3, 87, 43]

print numbers[1], numbers[2], numbers[0]

87 43 3

x = 3

print numbers[x-2]

87

Print numbers[1.0]

TypeError: sequence index must be integer

print numbers[3]

TypeError: list index out of range

print numbers[-1] # a negative index counts back

3 # from the end of the list

 # index -1 is the last element

print numbers[-3]

TypeError: list index out of range

Guide to Programming with Python

Accessing Many Elements:

• By index value, one at a time (called list traversal)

list of a known size

horsemen = [‘war’, ‘famine’, ‘pestilence’, ‘death’]

i = 0

while i < 4:

 print horsemen[i]

 i = i + 1

or if you don’t know how long the list is

i = 0

length = len(horsemen)

while i < length:

 print horsemen[i]

 i = i + 1

war

famine

pestilence

death

always safer to use

len as an upper bound

always I < length;

never I <= length

Guide to Programming with Python

List Membership:

• You simply ask if a value is “in” or “not in” a list.

• This is always a True/False question.

horsemen = [‘war’, ‘famine’, ‘pestilence’, ‘death’]

if ‘debauchery’ in horseman:

 print ‘There are more than 4 horsemen of the apocolipse.

print ‘debauchery’ not in horsemen

1

Guide to Programming with Python

Loop Operator for Lists

• We have already seen that a while-loop can be used

to “traverse” a list.

• There is also a special for-loop notation.

• Exercise: Print out a list of ten 0s and 1s.

horsemen = [‘war’, ‘famine’, ‘pestilence’, ‘death’]

for horseman in horsemen:

 print horseman

a different variable

for x in range(20):

 print x%2

Guide to Programming with Python

List Operations:

• Add two lists:

• Repeat a list many times:

• Exercise: Create a list of 20 zeros.

a = [1, 2, 3]

b = [4, 5, 6]

c = a + b

print c

[1, 2, 3, 4 ,5, 6]

a = [1, 2, 3]

print a*3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

zeros = [0]*20

Guide to Programming with Python

List Slices:

• Sometimes you just want a sub-list (slice) of a list.

• Exercise: What does vowels[:3] mean?

list[a:b] means

 list[a], list[a+1], …, list[b-1]

all list elements with indexes from a to b;

including a and excluding b

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘u’]

print vowels[2:4]

[‘i’, ‘o’]

how do you print out the last element?

print vowels[2:]

[‘i’, ‘o’, ‘u’]

[‘a’, ‘e’, ‘i’]

Guide to Programming with Python

Exercise:

• What does [:] mean?

>>> print vowels[:]

[‘a’, ‘e’, ‘i’, ‘o’, ‘u’]

Guide to Programming with Python

Lists are Mutable (Their values can

change):

• However it gets trickier when you try to add

something to a list and not just replace something . .

.

fruit = [‘apple’, ‘orange’, ‘pear’]

fruit[1] = ‘fig’

print fruit

[‘apple’, ‘fig’, ‘pear’]

Guide to Programming with Python

List Slices Used to Modify a List:

• Suppose you are keeping an ordered list:

• And you want to add kate. Assignment doesn’t work!

• You can add an element by squeezing it into an

empty slice between two list elements:

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

names[2] = ‘kate’

print names

[‘adam’, ‘carol’, ‘kate’, ‘margot’, ‘phil’]

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

names[2:2] = ‘kate’

print names

[‘adam’, ‘carol’, ‘henry’, ‘kate’, ‘margot’, ‘phil’] Starting at index 2

but not including 2;

ie, empty

Guide to Programming with Python

List Deletion:

• Using the del operator

• Replacing an element with an empty list

• Deleting slices

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

del names[3]

print names

 [‘adam’, ‘carol’, ‘henry’, ‘phil’]

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

names[3:4] = []

print names

 [‘adam’, ‘carol’, ‘henry’, ‘phil’]

names = [‘adam’, ‘carol’, ‘henry’, ‘margot’, ‘phil’]

del names[1:4]

print names

 [‘adam’, ‘phil’]

Guide to Programming with Python

Objects and Values:

• Remember:

• So memory looks like:

• Two places in memory called x and y, both pointing

to a place with a 3 stored in it.

x = 3

y = 3

print id(x), id(y)

135045528 135045528

3
x

y

Guide to Programming with Python

Lists, Objects and Values

• Lists are different:

• So this time the memory state picture is:

a = [1, 2, 3]

b = [1, 2, 3]

print id(a), id(b)

135023431 135024732

[1, 2, 3]

[1, 2, 3]

a

b

Guide to Programming with Python

Lists, Objects and Values

• However, if we use assignment:

• So this time the memory state picture is:

a = [1, 2, 3]

b = [1, 2, 3]

print id(a), id(b)

135023431 135024732

[1, 2, 3]

[1, 2, 3]

a

b

Guide to Programming with Python

Aliasing

• However, if we assign one variable to another:

• So this time the memory state picture is:

• More importantly, changing b also changes a

a = [1, 2, 3]

b = a

print id(a), id(b)

135023431 135023431

[1, 2, 3]

a

b

b[0] = 0

print a

[0, 2, 3]

Guide to Programming with Python

Lists are like:

• Money:

• Or also Credit Cards:

[1, 2, 3]

[1, 2, 3]

my wallet

my wife’s purse

[1, 2, 3]

me

my wife

Guide to Programming with Python

Cloning a List:

• Cloning means making an exact but separate copy:

• Not Cloning:

• Cloning:

a = [1, 2, 3]

b = a

print id(a), id(b)

135023431 135023431

a = [1, 2, 3]

b = a[:] # slices are always separate lists

print id(a), id(b)

135023431 13502652

Guide to Programming with Python

List Parameters:

• We create a function and we pass a list as its

argument.

def head(lst): # returns the first element of a list

 return lst[0] # list remains unchanged.
numbers = [1, 2, 3]

x = head(numbers)

print x

print numbers

1

[1, 2, 3]

[1, 2, 3]

numbers

lst

__main__

head

Guide to Programming with Python

Changing List Arguments:

def tail(lst):

 return lst[1:]

numbers = [1,2,3]

rest = tail(numbers)

print numbers

[1,2,3]

print rest

[2,3]

def deleteHead(lst):

 del lst[0]

numbers = [1,2,3]

deleteHead(numbers)

print numbers

[2,3]

Guide to Programming with Python

Lists and Strings:

• The String module has very useful list functions.

Suppose we have

• And we want

• There is a string function that will split up a string

into a list of tokens.

‘The rain in Spain falls mainly in the plane’

[‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]

str = ‘The rain in Spain falls mainly in the plane’

tokens = string.split(str)

print tokens

 [‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]

Guide to Programming with Python

Lists and Strings:

• The opposite to string.split() is string.join().

tokens = [‘The’, ‘rain’, ‘in’, ‘Spain’, ‘falls’, ‘mainly’, ‘in’, ‘the’, ‘plane’]

str = string.join(tokens,‘ ‘)

print str

‘The rain in Spain falls mainly in the plane’

join() will join tokens with whatever separator

you wish to use. In this case the separator is

a space ‘ ‘.

