
Database Management Systems 



 Machine Language  0 and 1 binary digits 
  

 Assembly Language Code words or Mnemonics 
◦ E.g. ADD     MOV    

 High Level Language(Third Generation Language 
or 3GL) 
English Like E.g. Pascal  ,C 
Compilers are used to debug the programs. 

 Application Program Generators or Report 
Program Generators(Fourth Generation Language 
or 4GL) 

 Artificial Intelligence(5GL) 
◦ Robotics  
◦ Expert Systems 

 





3GL 4GL 

Professional Programmers Professional and Non Professional 
programmers 

Requires specification of how to 
perform the task 

Requires specification of  what 
task  to perform  

Large number of procedural 
instructions required 

Less instructions 

Debugging difficult Debugging easy 

File oriented Database oriented 



 Database 

Collection of data of a particular entity 

 Database Management Systems  

Software which provides to tools for managing 
data stored in the database 

 Data defining data Metadata 
 Data 

 



Database 

Operating 

systems 

DBMS  

Application 

Programs 



 DBMS contains information about a particular 
enterprise 
◦ Collection of interrelated data 
◦ Set of programs to access the data  
◦ An environment that is both convenient and efficient to use 

 Database Applications: 
◦ Banking: transactions 
◦ Airlines: reservations, schedules 
◦ Universities:  registration, grades 
◦ Sales: customers, products, purchases 
◦ Online retailers: order tracking, customized 

recommendations 
◦ Manufacturing: production, inventory, orders, supply chain 
◦ Human resources:  employee records, salaries, tax 

deductions 

 Databases can be very large. 
 Databases touch all aspects of our lives 

 
 



 Application program examples 
◦ Add new students, instructors, and courses 

◦ Register students for courses, and generate 
class rosters 

◦ Assign grades to students, compute grade 
point averages (GPA) and generate transcripts 

 In the early days, database applications 
were built directly on top of file systems 

 



 
◦ Data redundancy and inconsistency 

 Multiple file formats, duplication of 
information in different files 

◦ Difficulty in accessing data  

 Need to write a new program to carry out 
each new task 

◦ Data isolation — multiple files and formats 
◦ Integrity problems 

 Integrity constraints  (e.g., account balance 
> 0) become “buried” in program code 
rather than being stated explicitly 

 Hard to add new constraints or change 
existing ones 



 

◦ Atomicity of updates 
 Failures may leave database in an inconsistent state with 

partial updates carried out 

 Example: Transfer of funds from one account to another 
should either complete or not happen at all 

◦ Concurrent access by multiple users 
 Concurrent access needed for performance 

 Uncontrolled concurrent accesses can lead to inconsistencies 
 Example: Two people reading a balance (say 100) and updating it 

by withdrawing money (say 50 each) at the same time 

◦ Security problems 
 Hard to provide user access to some, but not all, data 

 

Database systems offer solutions to all the above 
problems 





Advantages of two tier architecture 

Understanding and maintenances is easier. 

Disadvantages: 

Performance will be reduced when there are more 

users. 

 

 

Advantages Three tier Architecture 

 Easy to modify with out affecting other modules  

 Fast communication  

 Performance will be good in three tier architecture. 



An architecture for a database system  



 Similar to types and variables in programming languages 

 Schema – the logical structure of the database  

◦ Example: The database consists of information about a set of customers 
and accounts and the relationship between them 

◦ Analogous to type information of a variable in a program 

◦ Physical schema: database design at the physical level 

◦ Logical schema: database design at the logical level 

 Instance – the actual content of the database at a particular point in time  

◦ Analogous to the value of a variable 

 Physical Data Independence – the ability to modify the physical schema 
without changing the logical schema 

◦ Applications depend on the logical schema 

◦ In general, the interfaces between the various levels and components 
should be well defined so that changes in some parts do not seriously 
influence others. 

 Logical Data Independence 

◦ is the ability to modify the logical schema without causing application 
program to be rewritten. 

 



Database 



Database Architecture 





 Physical level: describes how a record (e.g., 
customer) is stored. 

 Logical level: describes data stored in database, and 
the relationships among the data. 
 type instructor = record 

  ID : string;  
 name : string; 
 dept_name : string; 
 salary : integer; 

end; 

 View level: application programs hide details of data 
types.  Views can also hide information (such as an 
employee’s salary) for security purposes.  



 Data Model 

 A collection of tools for describing  
◦ Data  
◦ Data relationships 
◦ Data semantics 
◦ Data constraints 

 Relational model 

 Entity-Relationship data model (mainly 
for database design)  

 Object-based data models (Object-
oriented and Object-relational) 

 Semi structured data model  (XML) 
 

 



 Other older models: 
◦ Hierarchical model  

  Information Management System(IMS) 

◦ Network model  
  Integrated Data Store(IDS) 
 

 



1. Parsing and translation 
2. Optimization 
3. Evaluation 



 Relational model  

 Example of tabular data in the relational model 
Columns 

Rows 





 Specification notation for defining the database schema 

Example: create table instructor ( 
                             ID                char(5), 
                             name           varchar(20), 
                             dept_name  varchar(20), 
                             salary           numeric(8,2)) 

 DDL compiler generates a set of table templates stored in a data 
dictionary 

 Data dictionary contains metadata (i.e., data about data) 

◦ Database schema  

◦ Integrity constraints 

 Primary key (ID uniquely identifies instructors) 

 Referential integrity (references constraint in SQL) 

 e.g. dept_name value in any instructor tuple must appear in 
department relation 

◦ Authorization 



 Normalization Theory  
 Formalize what designs are bad, and test 

for them 
 Entity Relationship Model  
 Models an enterprise as a collection of 

entities and relationships 
 Entity: a “thing” or “object” in the enterprise that is 

distinguishable from other objects 
 Described by a set of attributes 

 Relationship: an association among several 
entities 

◦ Represented diagrammatically by an entity-
relationship diagram: 



 Models an enterprise as a collection of 
entities and relationships 
◦ Entity: a “thing” or “object” in the enterprise that 

is distinguishable from other objects 

 Described by a set of attributes 

◦ Relationship: an association among several 
entities 

 Represented diagrammatically by an 
entity-relationship diagram: 

What happened to dept_name of instructor and student? 



 Relational model: flat, “atomic” values 
 Object Relational Data Models 
◦ Extend the relational data model by including 

object orientation and constructs to deal with 
added data types. 

◦ Allow attributes of tuples to have complex 
types, including non-atomic values such as 
nested relations. 

◦ Preserve relational foundations, in particular the 
declarative access to data, while extending 
modeling power. 

◦ Provide upward compatibility with existing 
relational languages. 



 Defined by the WWW Consortium (W3C) 
 Originally intended as a document markup 

language not a database language 
 The ability to specify new tags, and to 

create nested tag structures made XML a 
great way to exchange data, not just 
documents 

 XML has become the basis for all new 
generation data interchange formats. 

 A wide variety of tools is available for 
parsing, browsing and querying XML 
documents/data 



 Storage manager is a program module that 
provides the interface between the low-level 
data stored in the database and the 
application programs and queries submitted 
to the system. 

 The storage manager is responsible to the 
following tasks:  
◦ Interaction with the file manager  
◦ Efficient storing, retrieving and updating of data 

 Issues: 
◦ Storage access 
◦ File organization 
◦ Indexing and hashing 
 



 Alternative ways of evaluating a given query 
◦ Equivalent expressions 

◦ Different algorithms for each operation 

 Cost difference between a good and a bad 
way of evaluating a query can be enormous 

 Need to estimate the cost of operations 
◦ Depends critically on statistical information about 

relations which the database must maintain 

◦ Need to estimate statistics for intermediate 
results to compute cost of complex expressions 

 



 What if the system fails? 
 What if more than one user is concurrently 

updating the same data? 
 A transaction is a collection of operations 

that performs a single logical function in a 
database application 

 Transaction-management component 
ensures that the database remains in a 
consistent (correct) state despite system 
failures (e.g., power failures and operating 
system crashes) and transaction failures. 

 Concurrency-control manager controls the 
interaction among the concurrent 
transactions, to ensure the consistency of the 
database.  



Database 



The architecture of a database systems is 
greatly influenced by 

 the underlying computer system on which the 
database is running: 

 Centralized 
 Client-server 
 Parallel (multi-processor) 
 Distributed      



 1950s and early 1960s: 
◦ Data processing using magnetic tapes for storage 

 Tapes provided only sequential access 

◦ Punched cards for input 

 Late 1960s and 1970s: 
◦ Hard disks allowed direct access to data 
◦ Network and hierarchical data models in widespread 

use 
◦ Ted Codd defines the relational data model 

 Would win the ACM Turing Award for this work 

 IBM Research begins System R prototype 

 UC Berkeley begins Ingres prototype 

◦ High-performance (for the era) transaction 
processing 

 



 1980s: 
◦ Research relational prototypes evolve into 

commercial systems 
 SQL becomes industrial standard 

◦ Parallel and distributed database systems 
◦ Object-oriented database systems 

 1990s: 
◦ Large decision support and data-mining 

applications 
◦ Large multi-terabyte data warehouses 
◦ Emergence of Web commerce 

 Early 2000s: 
◦ XML and XQuery standards 
◦ Automated database administration 

 Later 2000s: 
◦ Giant data storage systems 

 Google BigTable, Yahoo PNuts, Amazon, .. 


