Transaction Management
Motivation

/ N - —_— oy,
User/application ¢

Database
N administrator
S ; : ‘
queries, “*kfs At g I DDL
updates | HnanGs commands
Query | Transaction DDL
compiler | manager \ compiler
- == L= &
query (metudan, e N \ meradata
- kY . J— - T
plan \ .srfrzsxzcr_q___,--— = —=n
8 — H"-.__‘_ \
.‘r-""-l , Y LW \ \
Execution Y Loggmg and Concurrency | | I
engine h B recovery control |
& - I
Y S S S | o\
index, file, and . '\ (S e - -
. . , I \ -
record requests L ey - v [
|
\ 1 Y [
; y \ I I \ {
Index/file/rec—| ' ' ‘98, \ Lok ,
: : . pages ;
ord manager & ; table ;
i gagin, ' \ ¢
aia, i ! |]
page metadaia,’, ", ; | o
c*om?rmndsll indexes > * | L jl - e
LA W A | B
Buffer |
manager > | Buffers |
i /
read/write Ssmmmumen - =
pages
Y
Storage
manager
< I b
Storage
o

Database management system components

DBMS Backend
Components

Our next focus

Transactions

* A transaction = sequence of operations that either all
succeed, or all fail

e Basic unit of processing in DBMS

* Transactions have the ACID properties:
A = atomicity
C = consistency
| = independence (lsolation)
D = durability

Goal: The ACID properties

A tomicity: All actions in the transaction happen, or none happen.

C onsistency: If each transaction is consistent, and the DB starts consistent,
it ends up consistent.

| solation: Execution of one transaction is isolated from that of all others.

D urability: If a transaction commits, its effects persist.

Integrity & Consistency of Data

« Data in the DB should be always correct and
consistent

Name

Age

White
Green
Gray

52
3421
1

Is this data correct
/ (consistent)?

Integrity & Consistency Constraints

« Define predicates and constraints that the data must satisfy

 Examples:

- X is key of relation R
-X —> y holds in R

- Domain(x) = {Red, Blue, Green}
- No employee should make more than twice the average salary

Schema-level Business-constraint
CREATE TABLE Students

Create Trigger EmpBonus
Before Insert Or Update On Employee
For Each Row

(sid: CHAR(20),
name: CHAR(20) NOT NULL,
login: CHAR(10),

age: INTEGER iEEl

gpa: REAL Default 0, :new.bonus := :new.salary * 0.03;
Constraint pk Primary Key (sid), End;
Constraint ul Unique (login)); /

FACT: DBMS is Not Consistent All the Time

Example: ai+az2+....an=TOT (constraint)

Deposit $100 ina2: a2 <« a2+ 100
TOT « TOT + 100

Initial state Intermediate state Final state
a2 50 150 150
TOT| 1000 1000 1100

consistent NI consistent [Consistent

Concept of Transactions

Transaction: a collection of actions that preserve consistency

ConsistentDB | ——

Consistent DB’

Main Assumption

If T starts with consistent state
AND
T executes in /solation
THEN
= T leaves consistent state

How Can Constraints Be
Violated?

Transaction Bug
— The semantics of the transaction is wrong
— E.g., update a2 and not ToT

DBMS Bug Should not use this DBMS
— DBMS fails to detect inconsistent states

Hardware Failure
— Disk crash, memory failure, ...

Concurrent Access components in
— Many transactions accessing the data at the same time DBMS
— E.g., T1: give 10% raise to programmers

that (if constraints are defined)

T2: change programmers —> systems analysts

How Can We Prevent/Fix Violations?

Chapter 17: Due to failures only
Chapter 18: Due to concurrent access only
Chapter 19: Due to failures and concurrent access

10

Plan of Attack (ACID properties)

* First we will deal with “I”, by focusing on concurrency control.
* Then we will address “A” and “D” by looking at recovery.

« What about “C”?

— Well, if you have the other three working, and you set up your integrity
constraints correctly, then you get “C” for free

Concurrent Transactions

11 T2 T3

-t

DB
(consistency
constraints)

N~

* Many transactions access the data at the same time

 Some are reading, others are writing
* May conflict

Transactions: Example

T1: Read(A) T2: Read(A)
A<« A+ 100 A—Ax?2
Write(A) Write(A)
Read(B) Read(B)

B < B+100 B« Bx?2
Write(B) Write(B)

Constraint: A=B

 How to execute these two transactions?
* How to schedule the read/write operations?

13

A Schedule

An ordering of operations (reads/writes) inside one or
more transactions over time

What 1s correct outcome ?

Leads

v

What Is good schedule ?

14

T1:Read(A) T2: Read(A)

A- A+ 100 A- A" 2
Write(A) Write(A)
Schedule A Read(B) Read(B)
B- B+100 B- B 2
Write(B) Write(B)
Constraint: A=B
A B
T T2 25 25
Read(A); A <~ A+100 . e
Write(A); 125
Read(B); B <~ B+100;
Write(B); 125
Read(A);A < Ax2;
. 250
Write(A);
Read(B);B <« Bx2; 250
Write(B);
250 | 250
Il nedule

15

T1:Read(A) T2: Read(A)

A- A+ 100 A- A" 2
Write(A) Write(A)
Read(B) Read(B)

SChedUIe B Bej B+100 Bej B” 2
Write(B) Write(B)

Constraint: A=B

T1 T2
Read(A);A - A 2;
Write(A);
Read(B);B - B’ 2;
Write(B);

Read(A); A- A+100

Write(A);

Read(B); B- B+100;

Write(B);

A | B
23 125
50
50
150
150
150 | 150

16

Serial Schedules !

Definition: A schedule in which transactions are performed in a
serial order (no interleaving)

The Good: Consistency is guaranteed
=>»Any serial schedule is “good”.

The Bad: Throughput is low, need to execute in parallel

Solution = Interleave Transactions in A Schedule...

17

T1: Read(A) T2: Read(A)

A- A+ 100 A- A" 2
Write(A) Write(A)
Schedule C Read(B) Read(B)
B - B+100 B- B" 2
Write(B) Write(B)
Constraint: A=B
A B
It 12 25 | 25
Read(A); A - A+100
Write(A); 195
Read(A;A - A" 2;
Write(A); 250
Read(B); B- B+100;
Write(B); 125
Read(B),B - B, 2,
Write(B); 250
250 | 250

18

T1: Read(A) T2: Read(A)
A- A+ 100 A- A" 2
Write(A) Write(A)
Schedule D Read (B) Read(B)
B - B+100 B- B 2
Write(B) Write(B)
Constraint: A=B
T1 T2
Read(A); A - A+100
Write(A);
Read(A),A- A" 2;
Write(A);
Read(B);B~ B’ 2;
Write(B);
Read(B); B - B+100;
Write(B);
cUgulc Al DU

A | B
22 | 23
125
250
50
150
250 | 150

Not Consistent

19

Same as Schedule D

SChed U Ie E but with new T2’

A B
- T2 25 | 25
Read(A); A= A+100 | ¢
Write(A); 1
Read(A);A-~ A1,
Write(A); 125
Read(B);B - B 1;
Write(B); 25
Read(B); B~ B+100;
Write(B); 195
125 | 125

ame schedule as D, bu is one is Consistent

What Is A ‘Good’ Schedule?

* Does not depend only on the sequence of operations
— Schedules D and E have the same sequence
— D produced inconsistent data ved - rola
— E produced consistent data -

« We want schedules that are guaranteed “good” regardless of:
— The initial state and
— The transaction semantics

* Hence we consider only:
— The order of read/write operations
— Any other computations are ignored (transaction semantics)

Example:
Schedule S =r1(A) wi(A) r2(A) w2(A) ri(B) wi(B) r2(B) w2(B)

21

Example: Considering Only R/W

Operations

T1 T2

Read(A); A - A+100

Write(A);
Read(A);A- A" 1;
Write(A);
Read(B);B-~ B 1;
Write(B);

Read(B); B- B+100;
Write(B);

¥

Schedule S =ri1(A) wi(A) r2(A) w2(A) r2(B) w2(B) ri(B) wi(B)

Concept: Conflicting Actions

Conflicting actions: Two actions from two different transactions on the
same object are conflicting iff one of them is write

No Conflict

r1(A) €> W2(A)

wl(A) €= r2(A)

wl(A) €= w2(A)

ri(A) €= r2(A)

=» Transaction 1 reads A, Transaction 2 write A

=» Transaction 1 writes A, Transaction 2 reads A

=» Transaction 1 writes A, Transaction 2 write A

=» Transaction 1 reads A, Transaction 2 reads A

onticting actions Can cause anomalles...

23

Anomalies with Interleaving

Reading Uncommitted Data (WR Conflicts, “dirty reads”):
e.g. T1: A+100, B+100, T2: A*1.06, B*1.06

TL: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Unrepeatable Reads (RW Conflicts):
E.g., T1: R(A),R(A), decrement, T2: R(A), decrement

T1: R(A), R(A), W(A), C

T2: R(A), W(A), C (

Overwriting Uncommitted Data (WW Conflicts): anomaly-free

T1: W(A), W(B), C
T2: W(A), W(B), C

24

Our Goal

* We need schedule that is equivalent to any serial schedule

f

It should allow

interleaving Any serial
order is good

Produces
consistent result
& anomaly-free

Given schedule S:
If we can shuffle the actions to reach a serial schedule L

=» Sis equivalentto L
=» Sis good

25

T1:Read(A)
A- A+ 100
Write(A)

Example: Schedule C r=o)

T1

B- B+100
Write(B)
Constraint: A=B

T2

Read(A); A - A+100
Write(A);

Read(B); B~ B+100;
Write(B);

Read(A):A- A" 2;
Write(A);

Read(B);B- B 2;
Write(B);

T2: Read(A)
A- A" 2
Write(A)
Read(B)
B- B 2
Write(B)

A B

125

250
250 | 250

26

T1 T2
Read(A); A - A+100

Example: Schedule C wrte(A)

Read(A);A- A’ 2;
Write(A);

Read(B); B~ B+100;
Write(B);

Read(B);B - B 2;

: > Write(B);

S.= 1(A) Wi(A) r2(A) wa(A) r:(B) wi(B) r2(B) w(B)

N ~ N ~ 4\ Can be switched because

they are not conflicting

S.”= r1(A) Wi(A) ri(B) wi(B) r2(A) wa(A) r2(B) w2(B)

N NG _/
~ ~

T1 T2

=>» Schedule C is equivalent to a serial schedule = So it is “Good”

27

Why Schedule C turned out feamisame

? Write(A);
to be Good - et A A2
1 i Write(A);
(Some Formalization) |
Write(B);
Read(B);B - B 2;

: > Write(B);

S.= 1(A) Wi(A) r2(A) wa(A) r:1(B) wi(B) r2(B) w(B)

NS

T1> T2 T1>T2
(T1 precedes T2) (T1 precedes T2)

* No cycles = S, is “equivalent” to a
serial schedule where T precedes To.

28

T1 T2
Read(A); A < A+100

Examp|e: SCheduIe D Write(A);

~ Read(A);A < Ax2;

~ Write(A);

~ Read(B);B < Bx2;
Write(B);

Read(B); B < B+100;

Write(B);

Sp= r(A) wi(A) r2(A) wz(A) r2(B) wz(B) ri(B) wi(B)

* (Can we shuffle non-conflicting actions to make
T1T2 orT2T1??

29

T1 T2
Read(A); A < A+100

Examp|e: SCheduIe D Write(A);

~ Read(A);A < Ax2;

~ Write(A);

~ Read(B);B < Bx2;
-~ Write(B);

Read(B); B < B+100;

Write(B);

Sy= r1(A) Wi(A) r2(A) wz(A) r2(B) wz(B) r1(B) wi(B)

 Can we make T1 first = [T1 T2]?

— No...Cannot move ri(B) wi(B) forward

— Why: because r1(B) conflict with w2(B) so it cannot move....Same for w1(B)

30

T1 T2
Read(A); A < A+100

Examp|e: SCheduIe D Write(A);

Read(A);A < Ax2;
Write(A);
Read(B);B < Bx2;
-~ Write(B);

Read(B); B < B+100;

Write(B);

Sp= rn(A) wi(A) r2(A) wz(A) r2(B) wz(B) ri(B) wi(B)

* Can we make T2 first = [T2 T1]?

— No...Cannot move r2(A) w2(A) forward

— Why: because r2(A) conflict with w1(A) so it cannot move....Same for w2(A)

=» Schedule D is NOT equivalent to a serial schedule =» So it is “Bad”

31

T1 v
Why Schedule D turned out tO |read(a); A< A+100

b e Ba d? Write(A); |
- Read(A);A < Ax2;

(Some Formalization) Write(A);
~ Read(B);B < Bx2;

 Write(B);
Read(B); B < B+100;
“ / Write(B);

Sp= r(A) wi(A) r2(A) wz(A) r2(B) wz(B) ri(B) wi(B)

NN S

T1> T2 T2 T1 T T
(T1 precedes T2) (T2 precedes T1) <

* Cycle Exist = Sy is “Not equivalent” to any serial schedule.

32

