
Transaction Management 

Motivation 

1 



2 

DBMS Backend 
Components  

Our next focus 



3 

Transactions 

• A transaction = sequence of operations that either all 
succeed, or all fail 
 

• Basic unit of processing in DBMS 
 

• Transactions have the ACID properties: 

A = atomicity 

C = consistency 

I = independence (Isolation) 

D = durability 



Goal: The ACID properties 

• A tomicity:  All actions in the transaction happen, or none happen. 

 

• C onsistency:  If each transaction is consistent, and the DB starts consistent, 

it ends up consistent. 

 

• I solation:  Execution of one transaction is isolated from that of all others. 

 

• D urability:  If a transaction commits, its effects persist. 

 

4 



5 

• Data in the DB should be always correct and 
consistent 

 

 

 

 

Name 

White 

Green 

Gray 

Age 

52 

3421 

1 

Integrity & Consistency of Data 

How DBMS decides if data is 
consistent? 

Is this data correct 

(consistent)? 



Schema-level 

Add Constraint command 
Business-constraint 

Use of Triggers 

6 

• Define predicates and constraints that the data must satisfy 

 

• Examples: 
- x is key of relation R 

- x  y holds in R 

- Domain(x) = {Red, Blue, Green} 

- No employee should make more than twice the average salary 

Integrity & Consistency Constraints 

Defining constraints (CS3431) 

CREATE TABLE Students 
 (sid: CHAR(20),  
  name: CHAR(20) NOT NULL,  
  login: CHAR(10), 

  age: INTEGER, 
  gpa: REAL Default 0, 

   Constraint pk Primary Key (sid), 
    Constraint u1 Unique (login));   

Create Trigger EmpBonus 

Before Insert Or Update On Employee 

For Each Row 

Begin 

      :new.bonus := :new.salary * 0.03; 

End; 

/ 



7 

. 

. 

50 

. 

. 

1000 

. 

. 

150 

. 

. 

1000 

. 

. 

150 

. 

. 

1100 

Example:  a1 + a2 +…. an = TOT (constraint) 

 Deposit $100 in a2:    a2    a2 + 100 

              TOT    TOT + 100 

FACT: DBMS is Not Consistent All the Time 

a2 

TOT 

Initial state Final state Intermediate state 

Not 

A transaction hides 
intermediate states  
(Even under failure) 



8 

Transaction:  a collection of actions that preserve consistency 

Consistent DB Consistent DB’ T 

If T starts with consistent state   

         AND 

T executes in isolation 

       THEN 

 T leaves consistent state 

Main Assumption 

Concept of Transactions 



9 

How Can Constraints Be 
Violated? 

• Transaction Bug 

– The semantics of the transaction is wrong 

– E.g., update a2 and not ToT 

• DBMS Bug 

– DBMS fails to detect inconsistent states  

• Hardware Failure 

– Disk crash, memory failure, … 

• Concurrent Access 
– Many transactions accessing the data at the same time 

– E.g., T1: give 10% raise to programmers             

                   T2: change programmers  systems analysts 

DBMS can easily detect and prevent 
that (if constraints are defined) 

Should not use this DBMS 

Our focus & Major 
components in 

DBMS 



10 

How Can We Prevent/Fix Violations? 

• Chapter 17: Due to failures only 

• Chapter 18: Due to concurrent access only 

• Chapter 19: Due to failures and concurrent access  



Plan of Attack (ACID properties) 

• First we will deal with “I”, by focusing on concurrency control. 

 

• Then we will address “A” and “D” by looking at recovery. 

 

• What about “C”? 
– Well, if you have the other three working, and you set up your integrity 

constraints correctly, then you get “C” for free 

11 



12 

T1  

DB 

(consistency 

constraints) 

Concurrent Transactions 

T2  T3  
Tn  

• Many transactions access the data at the same time 

• Some are reading, others are writing  

• May conflict  



13 

Transactions: Example 

T1: Read(A)             T2: Read(A) 

  A  A + 100          A  A  2 

  Write(A)              Write(A) 

  Read(B)               Read(B) 

  B  B+100              B  B  2 

  Write(B)              Write(B) 

 

Constraint:  A=B 

• How to execute these two transactions? 

• How to schedule the read/write operations? 



14 

A Schedule 

   An ordering of operations (reads/writes) inside one or 
more transactions over time 

What is correct outcome ? 

What is good schedule ? 

Leads  

To 



15 

Schedule A 

T1                                  T2 

Read(A); A  A+100 

Write(A); 

Read(B); B   B+100; 

Write(B); 

                         Read(A);A   A2; 

                              Write(A); 

                             Read(B);B   B2; 

                         Write(B); 

    

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

A B 

25 25 

 

125 

 

 125 

 

250 

 

 250 

  

250     250  

Serial Schedule: T1, T2 



16 

Schedule B 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

     Read(A);A ¬  A´2; 

     Write(A); 

     Read(B);B ¬  B´2; 

     Write(B); 

Read(A); A ¬ A+100 

Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

       

  

A  B 

25  25 

 

50 

 

 50 

 

150 

 

 150 

150  150 
Serial Schedule: T2, T1 



17 

Serial Schedules ! 

• Definition: A schedule in which transactions are performed in a 
serial order (no interleaving) 

 

• The Good: Consistency is guaranteed 

•                  Any serial schedule is “good”. 

 

• The Bad: Throughput is low, need to execute in parallel 

Solution  Interleave Transactions in A Schedule… 



18 

Schedule C 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

250 

 

 125 

 

 250 

250  250 
Schedule C is NOT serial but its Good 



19 

Schedule D 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

         Read(B);B ¬  B´2; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

250 

 

 50 

 

 150 

250  150 

Schedule C is NOT serial but its Bad Not Consistent 



20 

Schedule E 
Same as Schedule D 
but with new T2’ 

T1     T2’ 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´1; 

     Write(A); 

         Read(B);B ¬  B´1; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

125 

 

 25 

 

 125 

125  125 

Same schedule as D, but this one is Good Consistent 



21 

What Is A ‘Good’ Schedule?  
• Does not depend only on the sequence of operations 

– Schedules D and E have the same sequence 

– D produced inconsistent data 

– E produced consistent data 

 

• We want schedules that are guaranteed “good”  regardless of: 
– The initial state and 

– The transaction semantics 
 

• Hence we consider only: 
– The order of read/write operations 

– Any other computations are ignored (transaction semantics) 
 

 

Transaction semantics 
played a role 

Example:  
Schedule S =r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 



Example: Considering Only R/W 
Operations 

22 

Schedule S =r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

T1     T2’ 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´1; 

     Write(A); 

         Read(B);B ¬  B´1; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 

 

    



23 

Concept: Conflicting Actions 

Conflicting actions:  Two actions from two different transactions on the 
same object are conflicting iff one of them is write 

 

 r1(A)  W2(A) 

 w1(A)   r2(A) 

 w1(A)  w2(A) 

 r1(A)  r2(A) 

 Transaction 1 reads A, Transaction 2 write A 

 Transaction 1 writes A, Transaction 2 reads A 

 Transaction 1 writes A, Transaction 2 write A 

 Transaction 1 reads A, Transaction 2 reads A No Conflict 

Conflicting actions can cause anomalies…Which is Bad 



Anomalies with Interleaving 

 Reading Uncommitted Data (WR Conflicts, “dirty reads”): 
e.g. T1: A+100, B+100,       T2: A*1.06, B*1.06 

 

 

 Unrepeatable Reads (RW Conflicts): 
    E.g., T1: R(A), …..R(A), decrement,           T2: R(A), decrement 

  Overwriting Uncommitted Data (WW Conflicts): 

 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:    R(A), W(A), C 

T1:  R(A),             R(A), W(A), C 
T2:   R(A), W(A), C 

T1:  W(A),        W(B), C 
T2:   W(A), W(B), C 

24 

We need 
schedule that is 

anomaly-free 



Our Goal 

• We need schedule that is equivalent to any serial schedule 

25 

It should allow 

interleaving Any serial 

order is good 
Produces 

consistent result 

& anomaly-free 

Given schedule S:  
If we can shuffle the non-conflicting actions to reach a serial schedule L 
     S is equivalent to L 
     S is good 



26 

Example: Schedule C 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

250 

 

 125 

 

 250 

250  250 



27 

Example: Schedule C 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

Sc= r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

Sc”= r1(A) w1(A) r1(B) w1(B) r2(A) w2(A) r2(B) w2(B) 

Can be switched because 

they are not conflicting 

T1 T2 

 Schedule C is equivalent to a serial schedule  So it is “Good” 



28 

Why Schedule C turned out 
to be Good ? 
     (Some Formalization) 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

Sc= r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

T1  T2 T1  T2 

(T1 precedes T2) (T1 precedes T2) 

 No cycles  Sc is “equivalent” to a 

    serial schedule where T1 precedes T2. 



29 

Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we shuffle non-conflicting actions to make 
T1 T2  or T2 T1 ?? 



30 

Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we make T1 first   [T1  T2]? 
– No…Cannot move r1(B) w1(B) forward 

– Why: because r1(B) conflict with w2(B) so it cannot move….Same for w1(B) 

 

 



31 

Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we make T2 first  [T2 T1]? 
– No…Cannot move r2(A) w2(A) forward 

– Why: because r2(A) conflict with w1(A) so it cannot move….Same for w2(A) 

 

  Schedule D is NOT equivalent to a serial schedule  So it is “Bad” 



32 

Why Schedule D turned out to 
be Bad? 
     (Some Formalization) 

T1  T2 T2  T1 

(T1 precedes T2) (T2 precedes T1) 

Cycle Exist  SD is “Not equivalent” to any serial schedule. 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

T1    T2  


