
Transaction Management 

Motivation 
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DBMS Backend 
Components  

Our next focus 
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Transactions 

• A transaction = sequence of operations that either all 
succeed, or all fail 
 

• Basic unit of processing in DBMS 
 

• Transactions have the ACID properties: 

A = atomicity 

C = consistency 

I = independence (Isolation) 

D = durability 



Goal: The ACID properties 

• A tomicity:  All actions in the transaction happen, or none happen. 

 

• C onsistency:  If each transaction is consistent, and the DB starts consistent, 

it ends up consistent. 

 

• I solation:  Execution of one transaction is isolated from that of all others. 

 

• D urability:  If a transaction commits, its effects persist. 
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• Data in the DB should be always correct and 
consistent 

 

 

 

 

Name 

White 

Green 

Gray 

Age 

52 

3421 
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Integrity & Consistency of Data 

How DBMS decides if data is 
consistent? 

Is this data correct 

(consistent)? 



Schema-level 

Add Constraint command 
Business-constraint 

Use of Triggers 
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• Define predicates and constraints that the data must satisfy 

 

• Examples: 
- x is key of relation R 

- x  y holds in R 

- Domain(x) = {Red, Blue, Green} 

- No employee should make more than twice the average salary 

Integrity & Consistency Constraints 

Defining constraints (CS3431) 

CREATE TABLE Students 
 (sid: CHAR(20),  
  name: CHAR(20) NOT NULL,  
  login: CHAR(10), 

  age: INTEGER, 
  gpa: REAL Default 0, 

   Constraint pk Primary Key (sid), 
    Constraint u1 Unique (login));   

Create Trigger EmpBonus 

Before Insert Or Update On Employee 

For Each Row 

Begin 

      :new.bonus := :new.salary * 0.03; 

End; 

/ 
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Example:  a1 + a2 +…. an = TOT (constraint) 

 Deposit $100 in a2:    a2    a2 + 100 

              TOT    TOT + 100 

FACT: DBMS is Not Consistent All the Time 

a2 

TOT 

Initial state Final state Intermediate state 

Not 

A transaction hides 
intermediate states  
(Even under failure) 
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Transaction:  a collection of actions that preserve consistency 

Consistent DB Consistent DB’ T 

If T starts with consistent state   

         AND 

T executes in isolation 

       THEN 

 T leaves consistent state 

Main Assumption 

Concept of Transactions 
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How Can Constraints Be 
Violated? 

• Transaction Bug 

– The semantics of the transaction is wrong 

– E.g., update a2 and not ToT 

• DBMS Bug 

– DBMS fails to detect inconsistent states  

• Hardware Failure 

– Disk crash, memory failure, … 

• Concurrent Access 
– Many transactions accessing the data at the same time 

– E.g., T1: give 10% raise to programmers             

                   T2: change programmers  systems analysts 

DBMS can easily detect and prevent 
that (if constraints are defined) 

Should not use this DBMS 

Our focus & Major 
components in 

DBMS 
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How Can We Prevent/Fix Violations? 

• Chapter 17: Due to failures only 

• Chapter 18: Due to concurrent access only 

• Chapter 19: Due to failures and concurrent access  



Plan of Attack (ACID properties) 

• First we will deal with “I”, by focusing on concurrency control. 

 

• Then we will address “A” and “D” by looking at recovery. 

 

• What about “C”? 
– Well, if you have the other three working, and you set up your integrity 

constraints correctly, then you get “C” for free 
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T1  

DB 

(consistency 

constraints) 

Concurrent Transactions 

T2  T3  
Tn  

• Many transactions access the data at the same time 

• Some are reading, others are writing  

• May conflict  
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Transactions: Example 

T1: Read(A)             T2: Read(A) 

  A  A + 100          A  A  2 

  Write(A)              Write(A) 

  Read(B)               Read(B) 

  B  B+100              B  B  2 

  Write(B)              Write(B) 

 

Constraint:  A=B 

• How to execute these two transactions? 

• How to schedule the read/write operations? 



14 

A Schedule 

   An ordering of operations (reads/writes) inside one or 
more transactions over time 

What is correct outcome ? 

What is good schedule ? 

Leads  

To 
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Schedule A 

T1                                  T2 

Read(A); A  A+100 

Write(A); 

Read(B); B   B+100; 

Write(B); 

                         Read(A);A   A2; 

                              Write(A); 

                             Read(B);B   B2; 

                         Write(B); 

    

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

A B 

25 25 

 

125 

 

 125 

 

250 

 

 250 

  

250     250  

Serial Schedule: T1, T2 
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Schedule B 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

     Read(A);A ¬  A´2; 

     Write(A); 

     Read(B);B ¬  B´2; 

     Write(B); 

Read(A); A ¬ A+100 

Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

       

  

A  B 

25  25 

 

50 

 

 50 

 

150 

 

 150 

150  150 
Serial Schedule: T2, T1 
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Serial Schedules ! 

• Definition: A schedule in which transactions are performed in a 
serial order (no interleaving) 

 

• The Good: Consistency is guaranteed 

•                  Any serial schedule is “good”. 

 

• The Bad: Throughput is low, need to execute in parallel 

Solution  Interleave Transactions in A Schedule… 
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Schedule C 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

250 

 

 125 

 

 250 

250  250 
Schedule C is NOT serial but its Good 
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Schedule D 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

         Read(B);B ¬  B´2; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

250 

 

 50 

 

 150 

250  150 

Schedule C is NOT serial but its Bad Not Consistent 
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Schedule E 
Same as Schedule D 
but with new T2’ 

T1     T2’ 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´1; 

     Write(A); 

         Read(B);B ¬  B´1; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 

 

    

A  B 

25  25 

 

125 

 

125 

 

 25 

 

 125 

125  125 

Same schedule as D, but this one is Good Consistent 
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What Is A ‘Good’ Schedule?  
• Does not depend only on the sequence of operations 

– Schedules D and E have the same sequence 

– D produced inconsistent data 

– E produced consistent data 

 

• We want schedules that are guaranteed “good”  regardless of: 
– The initial state and 

– The transaction semantics 
 

• Hence we consider only: 
– The order of read/write operations 

– Any other computations are ignored (transaction semantics) 
 

 

Transaction semantics 
played a role 

Example:  
Schedule S =r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 



Example: Considering Only R/W 
Operations 

22 

Schedule S =r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

T1     T2’ 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´1; 

     Write(A); 

         Read(B);B ¬  B´1; 

     Write(B); 

Read(B); B ¬  B+100; 

Write(B); 
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Concept: Conflicting Actions 

Conflicting actions:  Two actions from two different transactions on the 
same object are conflicting iff one of them is write 

 

 r1(A)  W2(A) 

 w1(A)   r2(A) 

 w1(A)  w2(A) 

 r1(A)  r2(A) 

 Transaction 1 reads A, Transaction 2 write A 

 Transaction 1 writes A, Transaction 2 reads A 

 Transaction 1 writes A, Transaction 2 write A 

 Transaction 1 reads A, Transaction 2 reads A No Conflict 

Conflicting actions can cause anomalies…Which is Bad 



Anomalies with Interleaving 

 Reading Uncommitted Data (WR Conflicts, “dirty reads”): 
e.g. T1: A+100, B+100,       T2: A*1.06, B*1.06 

 

 

 Unrepeatable Reads (RW Conflicts): 
    E.g., T1: R(A), …..R(A), decrement,           T2: R(A), decrement 

  Overwriting Uncommitted Data (WW Conflicts): 

 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:    R(A), W(A), C 

T1:  R(A),             R(A), W(A), C 
T2:   R(A), W(A), C 

T1:  W(A),        W(B), C 
T2:   W(A), W(B), C 
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We need 
schedule that is 

anomaly-free 



Our Goal 

• We need schedule that is equivalent to any serial schedule 
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It should allow 

interleaving Any serial 

order is good 
Produces 

consistent result 

& anomaly-free 

Given schedule S:  
If we can shuffle the non-conflicting actions to reach a serial schedule L 
     S is equivalent to L 
     S is good 



26 

Example: Schedule C 

T1: Read(A)             T2: Read(A) 

  A ¬ A + 100           A ¬ A ´ 2 

  Write(A)               Write(A) 

  Read(B)               Read(B) 

  B ¬ B+100              B ¬ B ´ 2 

  Write(B)               Write(B) 

Constraint:  A=B 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

A  B 

25  25 

 

125 

 

250 

 

 125 

 

 250 

250  250 
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Example: Schedule C 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

Sc= r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

Sc”= r1(A) w1(A) r1(B) w1(B) r2(A) w2(A) r2(B) w2(B) 

Can be switched because 

they are not conflicting 

T1 T2 

 Schedule C is equivalent to a serial schedule  So it is “Good” 
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Why Schedule C turned out 
to be Good ? 
     (Some Formalization) 

T1     T2 

Read(A); A ¬ A+100 

Write(A); 

     Read(A);A ¬  A´2; 

     Write(A); 

Read(B); B ¬  B+100; 

Write(B); 

         Read(B);B ¬  B´2; 

     Write(B); 

    

Sc= r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

T1  T2 T1  T2 

(T1 precedes T2) (T1 precedes T2) 

 No cycles  Sc is “equivalent” to a 

    serial schedule where T1 precedes T2. 
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Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we shuffle non-conflicting actions to make 
T1 T2  or T2 T1 ?? 
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Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we make T1 first   [T1  T2]? 
– No…Cannot move r1(B) w1(B) forward 

– Why: because r1(B) conflict with w2(B) so it cannot move….Same for w1(B) 
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Example: Schedule D 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

• Can we make T2 first  [T2 T1]? 
– No…Cannot move r2(A) w2(A) forward 

– Why: because r2(A) conflict with w1(A) so it cannot move….Same for w2(A) 

 

  Schedule D is NOT equivalent to a serial schedule  So it is “Bad” 
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Why Schedule D turned out to 
be Bad? 
     (Some Formalization) 

T1  T2 T2  T1 

(T1 precedes T2) (T2 precedes T1) 

Cycle Exist  SD is “Not equivalent” to any serial schedule. 

SD= r1(A) w1(A) r2(A) w2(A) r2(B) w2(B) r1(B) w1(B) 

T1    T2  


