Chapter 6: Data Types Revisited 223

also true. If we exceed the range from negative side we end up
on positive side.

Storage Classes in C

We have already said all that needs to be said about constants, but
we are not finished with variables. To fully define a variable one
needs to mention not only its ‘type’ but also its ‘storage class’. In
other words, not only do all variables have a data type, they also
have a ‘storage class’.

We have not mentioned storage classes yet, though we have
written several programs in C. We were able to get away with this
because storage classes have defaults. If we don’t specify the
storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the
variable i1s used. Thus, variables have certain default storage
classes.

From C compiler’s point of view, a variable name identifies some
physical location within the computer where the string of bits
representing the variable’s value is stored. There are basically two
kinds of locations in a computer where such a value may be kept—
Memory and CPU registers. It is the variable’s storage class that
determines in which of these two locations the value is stored.

Moreover, a variable’s storage class tells us:

(a) Where the variable would be stored.

(b) What will be the initial value of the variable, if initial value is
not specifically assigned.(i.e. the default initial value).

(c) What is the scope of the variable; i.e. in which functions the
value of the variable would be available.

(d) What is the life of the variable; i.e. how long would the
variable exist.



224 Let Us C

There are four storage classes in C:

(a) Automatic storage class
(b) Register storage class
(c) Static storage class

(d) External storage class

Let us examine these storage classes one by one.

Automatic Storage Class

The features of a variable defined to have an automatic storage
class are as under:

Storage —  Memory.

Default initial value — An unpredictable value, which is often
called a garbage value.

Scope — Local to the block in which the variable
is defined.

Life — Till the control remains within the block

in which the variable is defined.

Following program shows how an automatic storage class variable
1s declared, and the fact that if the variable is not initialized it
contains a garbage value.

main( )

{

autoint i,j;

printf ("\n%d %d",i,j);
}

The output of the above program could be...
1211 221

where, 1211 and 221 are garbage values of i and j. When you run
this program you may get different values, since garbage values



Chapter 6: Data Types Revisited 225

are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are likely to get
unexpected results. Note that the keyword for this storage class is
auto, and not automatic.

Scope and life of an automatic variable is illustrated in the
following program.

main( )
{
autoint i=1;
{
{
{
printf ("\n%d ", i) ;
}
printf ("%d ", i) ;
}
printf ("%d", i) ;
}
}

The output of the above program is:
111

This is because, all printf( ) statements occur within the outermost
block (a block is all statements enclosed within a pair of braces) in
which i has been defined. It means the scope of i is local to the
block in which it is defined. The moment the control comes out of
the block in which the variable is defined, the variable and its
value 1is irretrievably lost. To catch my point, go through the
following program.

main( )

{

autoint i=1;

{



226 Let Us C

autoint i=2;
{ autoint i=3;
printf ("\n%d ", i) ;
i)rintf("%d "i);
} };Jrintf("%d", i);

The output of the above program would be:
321

Note that the Compiler treats the three i’s as totally different
variables, since they are defined in different blocks. Once the
control comes out of the innermost block the variable i with value
3 is lost, and hence the i in the second printf() refers to i with
value 2. Similarly, when the control comes out of the next
innermost block, the third printf( ) refers to the i with value 1.

Understand the concept of life and scope of an automatic storage

class variable thoroughly before proceeding with the next storage
class.

Register Storage Class

The features of a variable defined to be of register storage class
are as under:

Storage - CPU registers.

Default initial value - Garbage value.

Scope - Local to the block in which the variable
is defined.

Life - Till the control remains within the block

in which the variable is defined.



Chapter 6: Data Types Revisited 227

A value stored in a CPU register can always be accessed faster
than the one that is stored in memory. Therefore, if a variable is
used at many places in a program it is better to declare its storage
class as register. A good example of frequently used variables is
loop counters. We can name their storage class as register.

main( )

{

registerint i;

for(i=1;i<=10;i++)
printf ("\n%d", i) ;
}

Here, even though we have declared the storage class of i as
register, we cannot say for sure that the value of i would be stored
in a CPU register. Why? Because the number of CPU registers are
limited, and they may be busy doing some other task. What
happens in such an event... the variable works as if its storage class
is auto.

Not every type of variable can be stored in a CPU register.

For example, if the microprocessor has 16-bit registers then they
cannot hold a float value or a double value, which require 4 and 8
bytes respectively. However, if you use the register storage class
for a float or a double variable you won’t get any error messages.
All that would happen is the compiler would treat the variables to
be of auto storage class.

Static Storage Class
The features of a variable defined to have a static storage class are
as under:

Storage —  Memory.
Default initial value — Zero.



228 Let Us C

Scope — Local to the block in which the variable
is defined.
Life — Value of the variable persists between

different function calls.

Compare the two programs and their output given in Figure 6.3 to
understand the difference between the automatic and static
storage classes.

main( ) main( )
{ {
increment( ) ; increment( ) ;
increment( ) ; increment( ) ;
increment( ) ; increment( ) ;
} }
increment( ) increment( )
{ {
autointi=1; staticinti=1;
printf ( "%d\n", i) ; printf ( "%d\n", i) ;
i=i+1; i=i+1;
}
The output of the above programs would be:
1 1
1 2
1 3

Figure 6.3

The programs above consist of two functions main() and
increment( ). The function increment( ) gets called from main( )
thrice. Each time it increments the value of i and prints it. The only
difference in the two programs is that one uses an auto storage
class for variable i, whereas the other uses static storage class.



Chapter 6: Data Types Revisited 229

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them is that static
variables don’t disappear when the function is no longer active.
Their values persist. If the control comes back to the same function
again the static variables have the same values they had last time
around.

In the above example, when variable i is auto, each time
increment( ) is called it is re-initialized to one. When the function
terminates, i vanishes and its new value of 2 is lost. The result: no
matter how many times we call increment( ), i is initialized to 1
every time.

On the other hand, if i is static, it is initialized to 1 only once. It is
never initialized again. During the first call to increment( ), i is
incremented to 2. Because i is static, this value persists. The next
time increment( ) is called, i is not re-initialized to 1; on the
contrary its old value 2 is still available. This current value of i
(i.e. 2) gets printed and then i =i + 1 adds 1 to i to get a value of 3.
When increment( ) is called the third time, the current value of i
(i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static int i = 1 is executed
only once, irrespective of how many times the same function is
called.

Consider one more program.

main( )
{
int % ;
int*fun() ;
j=fun();
printf ("\n%d", *j ) ;
}

int *fun( )
{



230 Let Us C

intk=35;
return (&k ) ;
}

Here we are returning an address of k from fun( ) and collecting it
in j. Thus j becomes pointer to k. Then using this pointer we are
printing the value of k. This correctly prints out 35. Now try
calling any function (even printf( ) ) immediately after the call to
fun( ). This time printf( ) prints a garbage value. Why does this
happen? In the first case, when the control returned from fun( )
though k went dead it was still left on the stack. We then accessed
this value using its address that was collected in j. But when we
precede the call to printf( ) by a call to any other function, the
stack i1s now changed, hence we get the garbage value. If we want
to get the correct value each time then we must declare k as static.

By doing this when the control returns from fun( ), k would not
die.

All this having been said, a word of advice—avoid using static
variables unless you really need them. Because their values are
kept in memory when the variables are not active, which means
they take up space in memory that could otherwise be used by
other variables.

External Storage Class

The features of a variable whose storage class has been defined as
external are as follows:

Storage — Memory.

Default initial value — Zero.

Scope — Global.

Life — As long as the program’s execution

doesn’t come to an end.



Chapter 6: Data Types Revisited 231

External variables differ from those we have already discussed in
that their scope is global, not local. External variables are declared
outside all functions, yet are available to all functions that care to
use them. Here is an example to illustrate this fact.

int i;
main( )

{
printf ( "\ni = %d", i) ;

increment( ) ;
increment( ) ;
decrement( ) ;
decrement( ) ;

}
increment( )
{
i=i+1;
printf ( "\non incrementing i = %d", i) ;
}
decrement( )
{
i=i-1;
printf ( "\non decrementing i = %d", i) ;
}

The output would be:

i=0

on incrementing i = 1

on incrementing i = 2

on decrementing i = 1
on decrementing i =0



232 Let Us C

As is obvious from the above output, the value of i is available to
the functions increment( ) and decrement( ) since i has been
declared outside all functions.

Look at the following program.

int x=21;
main( )

{

externint y;
printf ("\n%d %d", X,y ) ;

}
inty=31;

Here, x and y both are global variables. Since both of them have
been defined outside all the functions both enjoy external storage
class. Note the difference between the following:

externint y ;
inty=31;

Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable no space is reserved for it,
whereas, when we define it space gets reserved for it in memory.
We had to declare y since it is being used in printf( ) before it’s
definition is encountered. There was no need to declare x since its
definition is done before its usage. Also remember that a variable
can be declared several times but can be defined only once.

Another small issue—what will be the output of the following
program?

int x=10;
main( )

{
int x=20;

printf ("\n%d", x ) ;



Chapter 6: Data Types Revisited 233

display( ) ;
}
display( )
{
printf ( "\n%d", x ) ;
}

Here x is defined at two places, once outside main( ) and once
inside it. When the control reaches the printf( ) in main( ) which x
gets printed? Whenever such a conflict arises, it’s the local
variable that gets preference over the global variable. Hence the
printf( ) outputs 20. When display( ) is called and control reaches
the printf( ) there is no such conflict. Hence this time the value of
the global x, i.e. 10 gets printed.

One last thing—a static variable can also be declared outside all
the functions. For all practical purposes it will be treated as an
extern variable. However, the scope of this variable is limited to
the same file in which it is declared. This means that the variable
would not be available to any function that is defined in a file other
than the file in which the variable is defined.

Which to Use When

Dennis Ritchie has made available to the C programmer a number
of storage classes with varying features, believing that the
programmer is in a best position to decide which one of these
storage classes is to be used when. We can make a few ground
rules for wusage of different storage classes in different
programming situations with a view to:

(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:



234 Let Us C

Use static storage class only if you want the value of a
variable to persist between different function calls.

Use register storage class for only those variables that are
being used very often in a program. Reason is, there are very
few CPU registers at our disposal and many of them might be
busy doing something else. Make careful utilization of the
scarce resources. A typical application of register storage class
is loop counters, which get used a number of times in a
program.

Use extern storage class for only those variables that are being
used by almost all the functions in the program. This would
avoid unnecessary passing of these variables as arguments
when making a function call. Declaring all the variables as
extern would amount to a lot of wastage of memory space
because these variables would remain active throughout the
life of the program.

If you don’t have any of the express needs mentioned above,
then use the auto storage class. In fact most of the times we
end up using the auto variables, because often it so happens
that once we have used the variables in a function we don’t
mind loosing them.

Summary

(2)

(b)
(©)

We can use different variations of the primary data types,
namely signed and unsigned char, long and short int, float,
double and long double. There are different format
specifications for all these data types when they are used in
scanf( ) and printf( ) functions.

The maximum value a variable can hold depends upon the
number of bytes it occupies in memory.

By default all the variables are signed. We can declare a
variable as unsigned to accommodate greater value without
increasing the bytes occupied.



Chapter 6: Data Types Revisited 235

(d) We can make use of proper storage classes like auto,
register, static and extern to control four properties of the
variable—storage, default initial value, scope and life.

Exercise

[A] What would be the output of the following programs:

(@) main()
{
int i;
for (i=0;i<=50000;i++)
printf ("\n%d", i) ;

}
(b) main()

{
float a=13.5;
double b=13.5;
printf ( "\n%f %If", a,b ) ;

}

(c) inti=0;

main( )

{
printf ( "\nmain's i = %d", i) ;
i++
val( ) ;
printf ( "\nmain's i = %d", i ) ;
val( ) ;

}

val()

{
i=100;
printf ("\nval's i = %d", i) ;
i++

}



