
Object Oriented

Programming with Python

Slides courtesy:Chapter Eight (Part I)
Object Oriented Programming; Classes, constructors, attributes, and methods

Objectives

 Create classes to define objects

 Write methods and create attributes for objects

 Instantiate objects from classes

 Restrict access to an object’s attributes

 Work with both new-style and old-style classes

Object Oriented programming with Python 2

Guide to Programming with Python 3

Python Is Object-Oriented

 Object-oriented programming (OOP):

Methodology that defines problems in terms of

objects that send messages to each other

– In a game, a Missile object could send a Ship object

a message to Explode

Understanding Object-Oriented Basics
 OOP allows representation of real-life objects as

software objects (e.g., a dictionary as an object)

 Object: A single software unit that combines

attributes and methods

 Attribute: A "characteristic" of an object; like a

variable associated with a kind of object

 Method: A "behavior" of an object; like a function

associated with a kind of object

 Class: Code that defines the attributes and

methods of a kind of object (A class is a collection

of variables and functions working with these

variables)

4

Fundamental Concepts of OOP

 Information hiding

 Data Abstraction

 Data Encapsulation

 Modularity

 Polymorphism

 Inheritance

Guide to Programming with Python 5

OO Paradigm - Review

 Three Characteristics of OO Languages

– Inheritance
• It isn’t necessary to build every class from scratch – attributes

can be derived from other classes

– Polymorphism
• The meaning of a method attribute depends on the object’s

class/subclass

– Encapsulation
• Object behavior and object data are combined in a single

entity. Object interface defines interaction with the object; no
need to know/understand the implementation.

Constructors

def __init__(self):

 self.value = 0

or

def __init__(self, thing):

 self.value = thing

 Usage: x = MyClass() sets x.value to 0

 y = MyClass(5) sets y.value to 5

(default constructor and parameterized constructor)

Class with Constructor

>>> class Complex:

 def __init__(self, realp,

imagp):

 self.r = realp

 self.i = imagp

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

Attributes (Data Members)

 Attributes are defined by an assignment
statement, just as variables are defined (as
opposed to being declared).

 def set(self, value):

 self.value = value

 Can be defined in classes or instances of classes.

 Attributes attached to classes belong to all
subclasses and instance objects, but attributes
attached to instances only belong to that instance.

Python Class Objects

 There is no new operator; to instantiate an object for

a class, use functional notation:

 x = MyClass()

 y = MyClass()

 Each time a class is called, a new instance object

is created. If the class has a constructor, you can

use it here.

 Instance objects have data attributes and methods

as defined in the class.

Python Class Data Members

 Variables in Python are created when they are
assigned to.

– New data members (attributes) can be created the
same way; e.g.,
x.counter = 1

creates a new data attribute for the object x – but not
for y.

 Beware – data attributes override method attributes
with the same name!

Information Hiding

 There is no foolproof way to enforce information hiding

in Python, so there is no way to define a true abstract

data type

 Everything is public by default; it is possible to

partially circumvent the methods for defining

private attributes.

Inheritance

class DerivedClassName(BaseClassName):

<statement-1>

. . .

<statement-N>

 If a requested attribute is not found in the derived

class, it is searched for in the base class. This rule

is applied recursively if the base class itself is

derived from some other class.

Multiple Inheritance

 Python supports multiple inheritance:

class DerivedClassName(B1, B2, B3):

 <statement-1>

 . . .

 <statement-N>

Multiple Inheritance

 Resolving conflicts: (Given the expression

object.attribute, find definition of attribute)

– Depth-first, left-to-right search of the base classes.

– “Depth-first”: start at a leaf node in the inheritance

hierarchy (the object); search the object first, its class

next, superclasses in L-R order as listed in the

definition.

Polymorphism

 In computer science, polymorphism is a programming

language feature that allows values of different data

types to be handled using a uniform interface.

 http://en.wikipedia.org/wiki/Type_polymorphism; 3/29/2010

http://en.wikipedia.org/wiki/Type_polymorphism

Types of Polymorphism

 Polymorphism with virtual functions is sometimes

called subtype polymorphism, inclusion

polymorphism or pure polymorphism

– This is the intended meaning when we say OO

programming implements polymorphism.

 Parametric polymorphism comes from templates

or generic functions

 Overloading is a kind of ad-hoc polymorphism

Polymorphism

 Polymorphism is a product of inheritance:

– A method’s definition is determined by the class of the

object that invokes it.

 By re-defining a method in a subclass (giving it a new

implementation), it is possible for a derived class to

override the parent class definition.

Polymorphism

 Virtual functions are those that can be overridden

– C++: defined with key word virtual

– Java & Python: every method is virtual by default

 Difference between abstract and virtual functions:

– Abstract methods aren’t defined

Object Orientation in Python

 In Python, everything is an object – integers, strings,

dictionaries, …

 Class objects are instantiated from user-defined

classes, other objects are from language defined

types.

Python Classes

 Can be defined anywhere in the program

 All methods and instance variables are public,

by default

– The language provides “limited support” for private

identifiers .

Example

class MyClass:

 def set(self, value):

 self.value = value

 def display(self):

 print(self.value)

MyClass has two methods: set and display; and
one attribute: value.

The class definition is terminated by a blank line.

Example

The first parameter in each method refers to the object
itself. Self is the traditional name of the parameter, but
it can be anything.

 def set(self, value):

 self.value = value

When the method is called, the self parameter is omitted

Example

Declare and assign value to a class variable:

>>> y = MyClass()

>>> y.set(4)

>>> y.display()

4

>>> y.value

4

Constructor - Example

Constructors are defined with the __init__ method.

Instead of

 def set(self, value):

use

 def __init__(self, value):

Constructors

def __init__(self):

 self.value = 0

or

def __init__(self, thing):

 self.value = thing

 Usage: x = MyClass() sets x.value to 0

 y = MyClass(5) sets y.value to 5

(default constructor and parameterized constructor)

Class with Constructor

>>> class Complex:

 def __init__(self, realp,

imagp):

 self.r = realp

 self.i = imagp

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

Attributes (Data Members)

 Attributes are defined by an assignment
statement, just as variables are defined (as
opposed to being declared).

 def set(self, value):

 self.value = value

 Can be defined in classes or instances of classes.

 Attributes attached to classes belong to all
subclasses and instance objects, but attributes
attached to instances only belong to that instance.

Attributes (Data Members)

Define class:

Class name, begin with capital letter, by convention

object: class based on (Python built-in type)

Define a method

Like defining a function

Must have a special first parameter, self, which provides way for a

method to refer to object itself

Python Class Objects

 There is no new operator; to instantiate an object for

a class, use functional notation:

 x = MyClass()

 y = MyClass()

 Each time a class is called, a new instance object

is created. If the class has a constructor, you can

use it here.

 Instance objects have data attributes and methods

as defined in the class.

Python Class Data Members

 Variables in Python are created when they are
assigned to.

– New data members (attributes) can be created the
same way; e.g.,
x.counter = 1

creates a new data attribute for the object x – but not
for y.

 Beware – data attributes override method attributes
with the same name!

Information Hiding

 There is no foolproof way to enforce information hiding

in Python, so there is no way to define a true abstract

data type

 Everything is public by default; it is possible to

partially circumvent the methods for defining

private attributes.

Information Hiding
#define the Vehicle class

class Vehicle:

 name = ""

 kind = "car"

 color = ""

 value = 100.00

 def description(self):

 desc_str = "%s is a %s %s worth $%.2f." % (self.name, self.color,

self.kind, self.value)

 return desc_str

your code goes here

car1 = Vehicle()

car1.name = "Fer"

car1.color = "red"

car1.kind = "convertible"

car1.value = 60000.00

Information Hiding
car2 = Vehicle() #creating an object

car2.name = "Jump"

car2.color = "blue"

car2.kind = "van"

car2.value = 10000.00

test code

print(car1.description())

print(car2.description())

Information Hiding
class Cup:

 def __init__(self, color):

 self._color = color # protected variable

 self.__content = None # private variable

def fill(self, tea):

 self.__content = tea

def empty(self):

 self.__content = None

redCup = Cup("red")

redCup.color = "red"

redCup.content = "tea"

redCup.empty()

redCup.fill("coffee")

print redCup.color

Information Hiding
class Person(object):

def __init__(self, name=None, job=None, quote=None, hash={}) :

 self.name = name

 self.job = job

 self.quote = quote

 self.hash = hash

#create an empty list

personList = []

#create two class instances

personList.append(Person("Payne N. Diaz", "coach", "Without exception, there is no rule!"))

personList.append(Person("Mia Serts", "bicyclist", "If the world didn't suck, we'd all fall off!"))

assign a single entry to the dictionary of each class instance

personList[0].hash['person0'] = 0

personList[1].hash['person1'] = 1

print dictionary of first class instance

print personList[0].hash{'person0': 0, 'person1': 1}

print dictionary of second class instance

print personList[1].hash{'person0': 0, 'person1': 1}

Two More Special Methods
class Puppy(object):

 def __init__(self):

 self.name = []

 self.color = []

 def __setitem__(self, name, color):

 self.name.append(name)

 self.color.append(color)

 def __getitem__(self, name):

 if name in self.name:

 return self.color[self.name.index(name)]

 else:

 return None

dog = Puppy()

dog['Max'] = 'brown'

dog['Ruby'] = 'yellow’
print "Max is", dog['Max']

 37

Summary

 Object-oriented Programming (OOP) is a
methodology of programming where new types of
objects are defined

 An object is a single software unit that combines
attributes and methods

 An attribute is a “characteristic” of an object; it’s a
variable associated with an object (“instance variable”)

 A method is a “behavior” of an object; it’s a
function associated with an object

 A class defines the attributes and methods of a
kind of object

Guide to Programming with Python 38

