

1. TOOL DESCRIPTIONS : SPREAD SHEETS, SCRATCH AND RAPTOR

1.1. Spreadsheets………………………………………………………………………………1

1.2. Scratch …………………………………………………………………………………..18

1.3. Raptor – Flowchart Interpreter ………………………………………………………….29

2. INFORMATION AND DATA

2.1. Data Handling in Spread Sheets ……………………………………………………….48

2.2. Data Handling – Using Formula Bar……………………………………………………51

2.3. Exercises…………………………………………………………………………………58

3. LOGIC – BOOLEAN AND SIMPLE PROPOSITIONAL LOGIC

3.1. True/False Propositions – Checking Equality………………………………………….62

3.2. True/False Propositions – Checking Inequality………………………………………..62

3.3. NOT – Negation…………………………………………………………………………63

3.4. AND – Conjunction …………………………………………………………………….64

3.5. OR – Disjunction………………………………………………………………………..65

3.6. Exercises…………………………………………………………………………………66

4. SELECTION AND REPETITION TECHNIQUES

4.1. Conditional Statements………………………………………………………………….68

4.2. Control Flow …………………………………………………………………………….69

4.3. Nested Control Flow…………………………………………………………………….69

4.4. Repetitive Control Structures -1………………………………………………………..70

4.5. Repetitive Control Structures -2………………………………………………………..73

4.6. Exercises………………………………………………………………………………...74

Table of Contents

5. RECURSION AND FACTORING TECHNIQUES

5.1. Recursion …………………………………………………………………………………76

5.2. Factoring ………………………………………………………………………………….88

5.3. Exercises…………………………………………………………………………………..94

6. SEARCHING AND SORTING TECHNIQUES

6.1. Searching ………………………………………………………………………………….96

6.2. Sorting ……………………………………………………………………………………106

6.3. Text Processing…………………………………………………………………………..116

6.4. Exercises………………………………………………………………………………….117

7. PROBLEM ABSTRACTION AND DECOMPOSITION

7.1. Modularization……………………………………………………………………………119

7.2. Exercises…………………………………………………………………………………..127

CREDITS…………………………………………………………………………………………128

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 1 of 155

1. TOOL DESCRIPTIONS : SPREAD SHEETS, SCRATCH AND RAPTOR

1.1. Spreadsheets

1.1.1. What are Spreadsheets and why Spreadsheets?

A spread sheet is an interactive computer application program for organization, analysis and storage of
data in tabular form. Spreadsheets were developed as computerized versions of paper accounting worksheets.
Spreadsheets have replaced paper-based systems throughout the business world. Although they were first
developed for accounting or bookkeeping tasks, they are now used extensively in any context where tabular lists
are built, sorted, and shared.

The program operates on data represented as cells of an array, organized in rows and columns. Each cell
of the array may contain either numeric or text data, or the results of formulae that automatically calculate and
display a value based on the contents of other cells. Spreadsheet allows users to adjust any stored value and
observe the effects on calculated values thereby making spreadsheets a very useful tool for "what-if" analysis as
a large amount of data of various cases can be quickly investigated without manual recalculation. Modern
spreadsheet software can have multiple sheets which can interact with each other and can display data either as
text, numerals, or in graphical form.

In addition to performing basic arithmetic and mathematical calculation, modern spreadsheets also
provide built-in calculations for most frequently and commonly used financial and statistical operations.
Calculations such as net present value or standard deviation can be applied to tabular data with pre-programmed
calculations in a formula. Spreadsheet programs also provide conditional expressions, built-in options to
convert between text and numbers, and options that operate on strings of text.

1.1.2. Flavors of Spreadsheet Software

Microsoft Excel is a proprietary spread sheet application developed by Microsoft for Microsoft
Windows Operating Systems. Gnumeric is a free, cross-platform spreadsheet program that is part of
the GNOME Free Software Desktop Project. OpenOffice Calc and the very closely related LibreOffice Calc are
free and open-source spreadsheets. With the advent of advanced web technologies such as Ajax circa 2005, a
new generation of online spreadsheets has emerged. Equipped with a rich Internet application user experience,
the best web based online spreadsheets have many of the features seen in desktop spreadsheet applications.
Some of them such as Office Online, ZOHO, Google Spreadsheets, EditGrid or ZK Spreadsheet also have
strong multi-user collaboration features and / or offer real time updates from remote sources such as stock
prices and currency exchange rates.

A host of other currently used spread sheet software include A list of current spreadsheet software
include Accel Spreadsheet from SSuite Office, Calligra Sheets (formerly KCalc),Corel Quattro Pro
(WordPerfect Office),GS-Calc, GridCraft collaborative cloud spreadsheet for web and iPad, iSpread for iPad,
iPhone and iPod Touch, Kingsoft Spreadsheets, Mariner Calc is Mariner Software's spreadsheet software for
Mac OS, Calc XLS is Mariner Software's spreadsheet software for iOS, Numbers is Apple Inc.'s spreadsheet
software, part of iWork, Quantrix Modeler, Multi-Dimensional Spreadsheet Software, ZCubes-Calc.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 2 of 155

1.1.3. How to start with Spreadsheets?

Of the various Spreadsheet application options available, we will be using Microsoft Excel for this
course. Microsoft Excel can be usually opened in a computer using the Windows Operating system by clicking
Start!Programs!Microsoft Office!Microsoft Excel. When a blank Excel spreadsheet opens, it is known as a
“workbook” or “book” as shown below in figure 1.

Figure 1: A work book containing 3 sheets

1.1.4. Spreadsheet Layout and Organization

The various parts of an open worksheet are shown in figure 2. A Work sheet is made of white colored
rectangles called cells which are arranged in “rows” and “columns” indicated by numbers and labeled by letters
respectively. A group of cells is known as a “range.” If you have multiple sheets in a book, you can quickly flip
through them using the work tabs on the left side bottom. On the bottom right side, in the gray status bar, you
can adjust your page views and zoom level.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 3 of 155

Figure 2: Parts of an Open Worksheet

The top of the Excel application is dominated by the “ribbon” (blue), which subdivided into “tabs” (red),
which are then further sub-divided into “sections” (green) as shown in figure 3. The tabs are further subdivided
into Home, Insert, Page Layout, Formulae, Data, Review, View etc. Each tab can be clicked which creates a
drop down box called a drop-down menu which has more options which can be selected by pointing and left
clicking with the mouse. Below the tabs, there are various sections such as clipboard which allows you to cut
copy and paste the values. Font section allows you to change the design of the letters, their color, size, styles
like underline, bold, italicize, draw an outline, fill with colors etc. The alignment section allows aligning the
contents to the left or right or center inside a cell. Similarly other sections provide many options which could be
explored as required.

Figure 3: Ribbon, Tabs and Sections

Below the ribbon is the “name box,” as shown in figure 4 which lets you rename “cells” and then to the
right of that is an area that allows you to create your all-important “formulae.” If you move your mouse pointer
over each icon, you can see the purpose of each button, but what we’re most concerned with is the wide area
where our formulae and functions will be displayed.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 4 of 155

Figure 4: Name box and Formula Bar

1.1.5. Performing Built-in Calculations in Excel

 A built-in calculation is an operation that takes one or more input values and outputs the result. Built in
calculations can be performed by clicking any cell and typing in the calculation. All built-in calculations in
Excel begin with an equal to sign (“=”).For example, =AVERAGE(2,4) is a built-in calculation to find average
of two input values 2 and 4 But AVERAGE(2,4) (without ‘=‘ sign) is just a string of text. Seeing the = sign,
Excel knows not to treat the name average or input values as ordinary text. Without an equals sign, Excel will
not calculate a result. Such built-in calculations in Excel are called as “Functions” The inputs to a function are
called “arguments”. For example, the arguments of the function average are 2 and 4.
 Figure 5 shows how to type in the function to calculate the average of 2 numbers in excel. As the formula
is typed, a small yellow box called tool tip helps you with the type of arguments that must be given to the
function.

Figure 5: Typing the average formula in worksheet 3, Cell A12

The left worksheet in Figure 6 shows the complete formula typed in cell A12. After typing the formula,
if the enter key is pressed, the result is displayed if the result is correct. Other wise an error shows up as a
message box which needs to be corrected as shown in figure 7. The worksheet on the right of figure 6 shows the
result displayed as a result of the execution of the average formula in A12.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 5 of 155

Figure 6: Results of executing the average formula

Figure 7: Result of executing a wrong formula to find average of a number and an alphabet

Note: Excel uses upper-case (capital) letters to list functions, but you can use lower - case (small) or upper-case
letters when you write them.

1.1.6. Function library in Excel

In Excel 2007, the “Function Library” can be found on the “Formulae” tab as shown in figure 8 or it
could be obtained by clicking Insert ! Function in older versions of Microsoft Excel as shown in figure 9. The
function library consists of a host of built-in functions which are broadly classified into Add-in and Automation

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 6 of 155

functions, Cube functions, Database functions, Date and time functions, Engineering functions, Financial
functions, Information functions, Logical functions, Lookup and reference functions, Math and trigonometry
functions, Statistical functions, Text functions etc. For example average is an example of a mathematical
function. The usage of these built in functions is similar to the average function example discussed in the
previous section 1.1.5.

Figure 8: Formula Library in Microsoft Excel 2007

Figure 9: Insert Function Library in Microsoft Excel 2007

1.1.7. Formulae, Names, Addresses and Operators in Microsoft Excel

 A formula in Excel is combination of “operators”, “operands”, and “functions.” For example, the
function =SUM adds a list of numbers (it is so commonly used, that is listed on the first menu in Excel,
abbreviated by the Greek letter Sigma (Σ), which is the notation that mathematicians use to sum a series). A
formula is used similar to performing a calculation by hand. For example, family budget calculation can be
written as shown below:

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 7 of 155

Remaining cash = (4 * weekly salary) – mortgage – food – utilities

 The symbols ‘* ‘And ‘–‘are called “operators” and are used to perform multiplication and division
respectively. Table 1 shows a list of common mathematical operators used for performing general arithmetic on
numbers and Table2 shows a list of operators used generally for comparing the values in two cells which may
result in either TRUE or FALSE results. The values ‘weekly salary’, ‘mortgage’, ‘food’ and ‘utilities’ are
known as “operands”. The result of executing this formula is the value named as ‘remaining cash’.

 The values for “food” and the other operands are names that you define in Excel. Without a “name,” you
would have to use the “address.” The address of a cell is written using row-column notation. The rows are given
numbers and the columns, letters. The first cell in the spreadsheet is A1.When you reached the end of the
alphabet, the rows are numbered AA, AB, BA, BB, etc.

Table 1: Common Mathematical Operators in Microsoft Excel

Math Operator Definition
+ Addition
- Subtraction, or negation, e.g., 6 * -1 = -6
* Multiplication
/ Division

% Percentage

Table 2: Common Comparison Operators in Microsoft Excel

Comparison Operator Definition
= Equals, e.g., 2=4 or “b” = “b”

> Greater than, e.g., 4 > 2 or “b” > “a”

< Less than, e.g., 2 < 4 or “a” < “b”

>= Greater than or equal to – another way to
think of this is >= means either > or =.

<= Less than or equal to.

<> Not equal to, e.g., 4<>6

1.1.8. Operator Order Precedence in Microsoft Excel

 Excel first evaluates items in parentheses working inside out. It then uses the order precedence rules of
mathematics. When two items have the same precedence, Excel works left to right. The precedence of math
operators is shown below in table 3, in descending order.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 8 of 155

Table 3: Operator Precedence of Excel Operators in Descending Order

(and)
When parentheses are used, they override the
normal rules of precedence. This means that
Excel will do this calculation first.

-
Negation, e.g., -1. This is the same as
multiplying a number by -1. -4 = 4 * (-1)

% Percent, means multiply by 100. E.g., 0.003 =
0.3%.

power() Exponentiation

* and /

Multiply and divide. How can two operators
have the same precedence? It just means that if a
formula has two more operators with the same
precedence, then the calculation is done left to
right.

+ and - Addition and subtraction.

1.1.9. Simple Examples of Formulae usage in Microsoft Excel

 An example to illustrate the usage of formula is shown in figure 10 which calculates the area of a circle.
The Radius of a circle is entered in cell A3 and the formula for area is typed in cell B3 which gets displayed in
the formula box as you type the formula in B3. The result appears in B3 after the enter key is pressed. When the
cell B3 is clicked with left mouse button the corresponding formula will get displayed in the formula box. For
the user’s reference, a heading called Radius and Area can be typed into cells for identification. Here the
heading is typed in the cells A2 and B2 to show that the row below A2 and B2 (3rd row) contains the radius
value and area value respectively. One can see that the formula in the formula box uses functions called PI and
Power which are present in the function library. This justifies the definition of a formula as given in the
beginning of section 1.1.7

Figure 10: A simple example using formula to calculate the area of a circle given the radius

 Figure 11 shows the calculation of Family budget example discussed in section 1.1.7 using Excel. One can
see that the formula refers to the cells (A10, B10, C10 and D10) to calculate the results and not the headers. The
headings are just for the user’s reference to identify what is what!

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 9 of 155

Figure 11: Example - Family budget calculation

1.1.10. Copying a Formula to a Range of Cells

 Excel allows that a formula can be written in a cell and copied into to a large area and the reference gets
automatically updated. This avoids having to edit each cell to ensure it points to the correct place. ”Range”
means more than one cell. For example, (C1:C10) means all the cells from cell C1 to cell C10 (a column of
cells).If a range cross five columns and ten rows, then you indicate the range by writing the top-left cell and
bottom right one, e.g., A8:E18. This is a square area that crosses rows and columns and not just part of a
column or part of a row as shown in figure 12.

Figure 12: A square range of cells

1.1.11. Cell Reference

 A “cell reference” means the cell to which another cell refers. For example, if in cell A1 you have =A2.
Then A1 refers to A2 as shown in figure 13.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 10 of 155

.

 Figure 13: Cell Reference

1.1.12. Types of Cell Reference

 There are three types of cell references

• Relative – Relative referencing means that the cell address changes as you copy or move it; i.e. the cell
reference is relative to its location. Referring the earlier example in figure 13, suppose in cell A1 we have
a formula that simply says =A2. That means Excel output in cell A1 whatever is inputted into cell A2. In
cell A2 we have typed “I’am A2” so Excel displays the value “I’am A2” in cell A1 as shown in figure 13.
As shown in figure 14, if you copy the contents of cell A1 to B1, the formula now refers to the cell B2
automatically i.e., it assumes that if A1=A2, B1=B2. B1 is zero as B2 does not contain anything. This is
shown in figure 14.

Figure 14: Relative Reference

Now, Typing I’am B2 into the cell B2 changes the contents of the cell B1 to I’am B2 as shown in figure 15.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 11 of 155

Figure 15: Modified Relative Reference

• Absolute – This means the cell reference stays the same if you copy or move the cell to any other cell.
This is done by anchoring the row and column, so it does not change when copied or moved. The $ sign is
used to make an absolute reference (anchor).For example, enter the formula =A1 in any cell. The $ in
front of the column A means do not change the column, the $ in front of the row 1 means do not change
the column when you copy or move the cell to any other cell as shown in figure 16.

Figure 16: Absolute Reference (C-Column) Vs Relative Reference (B-Column)

• Mixed – This means you can choose to anchor either the row or the column when you copy or move the
cell, so that one changes and the other does not. For example, you could anchor the row reference then
move a cell down two rows and across four columns and the row reference stays the same. Mixed
references are when either the row or column is anchored.

 For example, suppose you are a farmer making a budget. You also own a feed store and sell seeds. You
are going to plant corn, soybeans, and alfalfa. The spreadsheet below shows the cost per acre. The “cost
per acre” = “price per pound” * “pounds of seeds per acre” – that’s what it will cost you to plant an acre.
Enter the cost per acre as =$B21 * C21 in cell D21. You are saying you want to anchor the price per
pound column. Then copy that formula to the other rows in the same column as shown below in figure
17.This applies the same formula to all other rows which is the concept of iteration in Excel.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 12 of 155

Figure 17: Mixed Reference Example – Data Entry

 Now you want to know the value of your inventory of seeds. You need the price per pound and the
number of pounds in inventory to know the value of the inventory. We add two columns: “pound of seed in
inventory” and then “value of inventory.” Now, copy the cell D21 to F23 and note that the row reference in
the first part of the original formula ($B21) is updated to row 4 but the column remains fixed because the $
anchors it to “B.” This is a mixed reference because the column is absolute and the row is relative. The
excel calculation is shown in figure 18.

Figure 18: Mixed Reference Example - Calculations

• Circular Reference - A circular reference is when a formula refers to itself. For example, you
cannot write c3 = c3 + 1. This kind of calculation is called “iteration” meaning it repeats itself.
Excel does not support iteration because it calculates everything only one time. If you try do this
by typing SUM(B24:B28) in cell B28 an error is shown as in the below figure 19.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 13 of 155

Figure 19: Circular Reference

 Excel only tells you that you have a circular reference at the bottom of the screen so you might not notice
it. If you do have a circular reference and close a spreadsheet and open it again, Excel will tell you in a pop-up
window that you have a circular reference. If you do have a circular reference, every time you open the
spreadsheet, Excel will tell you with that pop-up window that you have a circular reference as shown in figure
20.

Figure 20: Circular Reference indication at the bottom of the window

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 14 of 155

1.1.13. Working with Multiple Worksheets

 A “workbook” is a collection of “worksheets.” Simply put, this means you can have multiple
spreadsheets (worksheets) in the same Excel file (workbook). As you can see in the figure 21 below, our
example workbook has many worksheets (in red).Worksheets by default are named Sheet1, Sheet2, and so
forth. You create a new one by clicking the small sheet (blue) at the bottom of the Excel screen or by using
insert ! worksheet as in older versions of excel.

Figure 21: Inserting a new worksheet

 You can change the worksheet name to something useful like “loan” or “budget” by right-clicking on the
worksheet tab shown at the bottom of the Excel program screen, selecting rename, and typing in a new name.
Or you can simply double-click on the tab and rename it as shown in figure 22.

Figure 22: Renaming a worksheet

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 15 of 155

1.1.14. References to Other Worksheets

 The formula for a worksheet reference is =worksheet!cell. You can use this kind of reference when the

same value is used in two worksheets, examples of that might be:

• Today’s date

• Currency conversion rate from Dollars to Euros

• Anything that is relevant to all the worksheets in the workbook

• Below in figure 23 is an example of worksheet “interest” making reference to worksheet “loan,” cell B1.

Figure 23: Referencing a worksheet - Example

1.1.15. Useful Functions - Math and Financial Functions

Table 4: Some commonly used Mathematical and Financial Functions in Microsoft Excel

Functions Purpose

SQRT Square root, e.g., SQRT(4)=2 because 2*2=4

PMT Loan payment
DEGREES Used by engineers, for example, to convert degrees (e.g., 360�) to radians (e.g. 2π)

GCD Finds the greatest-common divisor between two numbers. For example, GDC(5,15)=5,
because 5 is the largest number that divides 15. 3 also divides 15, but that is not
the largest divisor they have in common.

RAND(23) Generate a random decimal number between or equal to 0 and 1. You could use this for
example, to pick a contest winner (see example below). RANDBETWEEN is easier to use,
since you do not have convert this decimal number to a whole number, e.g., 3 is easier to
use than 0.3.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 16 of 155

1.1.16. Useful Functions - Logical Functions

 Logical functions are used to test whether something is true or false.

Table 5: Some commonly used Logical Functions in Microsoft Excel

Function Purpose
IF If(<test>,X,Y)If <test> is true, then the value is X, otherwise the value is Y. For

example this formula =IF(C2=5,”C2=5″,”C2<>5″)Displays “C2=5” if C2=5,
otherwise it will display “C2<>5”

AND =AND(C3=5,C4=5)Displays “TRUE” if both C3=5 and C4=5
FALSE Sets the cell to false
TRUE Sets the cell to true

1.1.17. Useful Functions - Date and Time Functions

 Dates are stored in excel as numbers, which means you can do math with them. You can use +1 to
calculate the next day and you can subtract one date from another to find how many days have elapsed between
two dates

Table 6: Some commonly used Date and Time Functions

Formula Result Purpose

=NOW() 9/16/2013 Get the current date and time

=DATEVALUE(“9/16/2013″) 41533

Convert date in text format to number.
This number is called the “serial
number”. Number 1 is January 1, 1900.
41,533 is 41,532 days after that or
9/16/2013.

=WEEKDAY(NOW())

Number of
the current
day when

the formula
is executed

Extracts the date as a number. 1 is
Sunday and 7 is Saturday.

=NOW()+1 9/17/2013 Since dates in Excel are stored as
numbers, you can do math with them.

1.1.18. VLOOKUP and HLOOKUP

 Vertical lookup (VLOOKUP) and horizontal lookup (HLOOKUP) functions are used to translate a
number or other value into something which is understandable For example, you can use VLOOKUP to take a
name and return the type =vlookup(lookup value, table where values reside, column # where values are located,
false). In the below figure 24, the cells from A12 to B16 form a table of names and types of fruits and
vegetables. Column F has a list of names in some order. Using VLOOKUP in column G, The table in A12 to
B16 is referred to fetch the type of each name. This is very useful function when the list is very big and manual
inspection and updating becomes tedious.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 17 of 155

Figure 24: VLOOKUP - Example

 HLOOKUP is another lookup and reference function which function retrieves data from the table
horizontally in contrast to VLOOKUP. Most of the searches in Excel, are made vertically, so this feature is
rarely used =HLOOKUP(reference,array,row_number,row). In the below figure 25, the cells from A21 to G23
form a table of employees with sales in different cities. To find the sales made by Cris in B28, The HLOOKUP
formula is typed in B28 which gives the sales obtained from the table. Similarly the city name also can be
fetched from the table using the HLOOKUP formula: =HLOOKUP(B27,A21:G23,3,FALSE). If you drag the
formula from B28 then automatically the city name gets updated in B29 due to relative referencing.

Figure 25: HLOOKUP – Example

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 18 of 155

1.2. Scratch

1.2.1. An Introduction to Scratch

Scratch is a programming language developed by the MIT Media Lab for the purpose of teaching
programming to teens and other first-time programmers. Scratch is a new programming language, initially
released in May 2007. Scratch supports the development of computer games, interactive stories, graphic
artwork and computer animation, and all sorts of other multimedia projects.

Scratch allows new programmers to create programs by snapping together blocks. Scratch consists of a

programming language made up of different blocks and an easy to learn graphical development environment
that includes a paint application for creating graphics and built-in sound editing capabilities. It also comes with
huge collections of sample applications as well as graphics and sound files, all of which you can use to create
your own Scratch projects.

As demonstrated in Figure 1, Scratch programs are made up of graphical blocks, which are snapped

together. Scratch blocks resemble puzzle pieces in the way that they snap together. Scratch blocks can only be
snapped together in ways that make sense, preventing new programmers from using them in invalid
combinations. In this way, Scratch enforces proper programming syntax and ensures that new programmers
learn the proper way to assemble and formulate programming logic.

1.2.2. Why Scratch?

Scratch provides everything needed to begin developing computer games, multimedia presentations,
interactive stories, graphic artwork, and computer animation.

Scratch can be used to play digital music and sound effects. Scratch’s building block approach to

programming sets it apart from other programming languages. This makes Scratch easier to learn. And yet
Scratch provides plenty of programming power, allowing you to build very powerful application projects.

If you aspire to one day to become a professional programmer, you will find that Scratch provides

everything needed to build a foundation from which you can make the transition. Scratch also packs all of the
programming power and punch needed to satisfy the programming needs of most computer enthusiasts and
hobbyists.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 19 of 155

Scratch’s slogan is Imagine—Program—Share! It is designed to encourage user’s creativity by
providing them with an easy to learn yet powerful programming environment in which they can unleash the
power of their imagination. Scratch encourages and facilitates the development of application projects using a
mixture of media, graphics, sound, and video in order to create something new.

1.2.3. Scratch’s Building Block Based Approach

In text-based programming languages, code statements are formulated by following a complex set of
syntax rules. Failure to precisely follow these rules when writing statements leads to errors that prevent
applications from running. Scratch, on the other hand, uses a different approach. Scratch application projects are
built by selecting and snapping together graphical programming blocks, as demonstrated in Figure 1.

By using code blocks in place of complex program text statements, Scratch significantly simplifies
application development while still making use of the same basic programming logic and concepts implemented
in other programming languages. As Figure 1 demonstrates, each code block represents a different command or
action. Blocks fit together like pieces in a puzzle. You can only snap together blocks in ways that make
syntactic sense, completely eliminating syntax errors that proliferate in other programming languages.

Some code blocks are configurable, allowing you to specify things like the number of times an action
should execute, text that is to be displayed, or the color to be used when displaying something on the screen.
Despite its use of graphical code blocks, Scratch supports the same basic set of programming techniques and
constructs as do other traditional programming languages. For example, Scratch supports variables, conditional
and iterative logic. Scratch also supports the manipulation of graphics and the integration of sound into
application projects.

1.2.4. Installing Scratch

Before you can use Scratch, you need to install it on your computer. The installation process varies,
depending on whether you use Microsoft Windows, Linux or Mac OS X. Instructions for installing Scratch on
all these operating systems are provided. You can download a copy of Scratch from the Scratch website by
executing the following steps:

1. Go to http://scratch.mit.edu and click on the Download Scratch Now! link.
2. The Download Scratch page appears. Fill in the optional form to receive updates about Scratch.
3. Click on the Continue to Scratch Download button. Click on the appropriate link for your operating

system.

1.2.5. Creating a New Scratch Project

All new Scratch projects automatically contain a single sprite, representing an image of a kitten. By
default, the sprite, named Sprite1, does not have any scripts but does have two costumes and two sounds
associated with it. Using this sprite, let’s create a Scratch application project that makes the kitten meow and
say ‘‘Hello World!’’ when clicked.

The first step in creating a new Scratch application is to click on the New button located at the top of the
Scratch IDE. In response, Scratch will create a new project, as shown in Figure 2. As Figure 2 shows, the
Scratch IDE is organized into a number of separate components. For starters, the code block area contains code
blocks, organized into ten different collections. You will use selected code blocks to create a script that makes
the kitten talk.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 20 of 155

1.2.6. Changing Sprite Attributes

The application project that you are creating is designed to work with the default sprite. Rather than use
the sprite’s default name of Sprite1, let’s assign it a more descriptive name. To do so, overtype the text
displayed at the top of the sprite area with the word Cat. Once you change the name assigned to the sprite, the
name change will automatically be reflected in the sprite list. If you look at the entry for the sprite in the sprite
list, you should see a picture of the sprite, its new name, and the number of costumes currently assigned to the
sprite (you can click on the Costumes tab at the top of the sprite area to view the sprite’s costumes) as shown in
Figure 3.

Figure 3: The Costumes Option in Scratch

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 21 of 155

1.2.7. Adding Code Blocks

1.2.7.1. Motion

Motion blocks control a sprite’s placement on the stage. Motion blocks are coloured blue. There are
motion blocks that let you set the direction a sprite will move and then other blocks to move them. There are
also motions blocks that report on a sprite’s location and direction.

Now that you have changed the name of the sprite, it is time to add the code blocks required to make the
cat move 10 steps. Let’s begin by clicking on the Motion button located at the top of the code block area. This
displays a collection of code blocks that control the motion. Locate the code block labeled

and drag and drop it onto the sprite area, as shown in Figure 4. Now when you click that code
block, it can be seen that the sprite moves 10 steps.

Figure 4: How to Use the Motion Code Block

1.2.7.2. Looks

Looks blocks modify sprite and background appearance and display text within popup bubbles. Looks

blocks are colored purple. There are looks blocks that let you modify sprite costumes and colors. There are also
blocks that let you modify a sprite’s size and control whether a sprite is visible on the stage.

Let us now see a sample code to make the sprite say ‘Let’s go!’ for 2 seconds. For that, create the code
as shown in Figure 5. Now when you press the green flag, in the execution area, you can see the sprite saying,
‘Let’s go!’.

Drag and Drop

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 22 of 155

Figure 5: An Example on Looks Code Block

1.2.7.3. Making Some Noise

Sound blocks play music and add sound effects to your Scratch application projects. Sound blocks are
colored pink. There are sound blocks that let you play sounds and drum beats, select different types of
instruments, control playback volume, and modify tempo. Figure 6 gives an idea on how the sound block ‘play
sound’ functions.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 23 of 155

Figure 6: An Example of Sound Code Block

1.2.7.4. Drawing Lines and Shapes

Pen blocks draw any combination of shapes and lines using a virtual pen. Pen blocks are coloured mint
green. There are pen blocks that let you enable and disable drawing, set colour and pen size, and apply shading.
An example on how to draw a line using pen is illustrated in Figure 7.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 24 of 155

Figure 7: An Example on How to Use Pen

1.2.7.5. Looping, Conditional Logic and Event Programming

Control blocks automate the execution of scripts, pause script execution, and send messages to other
sprites, allowing sprites to synchronize their execution. There is also control block that let you set up loops to
repeatedly execute collections of code blocks as well as control blocks that let you conditionally execute other
code blocks based on whether or not a test condition evaluates as true. Control blocks are colored gold.

The code snippet given in Figure 8 is an example of a simple loop that repeats for 10 times. The sprite
moves 10 steps repeatedly for 10 times. Also Figure 9 is an example of implementing conditional statements,
i.e. in creating blocks which check for certain conditions.

Figure 8: An Example on Repetition

Figure 9: An Example of conditional statements

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 25 of 155

1.2.7.6. Sensing Sprite Location and Environmental Input

Sensing blocks determine the location of the mouse-pointer, its distance from other sprites, and whether
a sprite is touching another sprite. A basic example of sensing is displayed in Figure 10. Here there are two
sprites, ‘Mouse’ and ‘Scratch Cat’. The code shown in Figure 10 is the script written for the sprite ‘Mouse’. If
the ‘Mouse’ sprite touches the ‘Scratch Cat’, then, the ‘Mouse’ sprite has to turn 180 degrees and move 10
steps.

Figure 10: An Example for Sensing

1.2.7.7. Working With Numbers

Data and operators blocks perform arithmetic operations, generate random numbers, and compare
numeric values to determine their relationship to one another. Data block is orange in colour and the operators
block is in green. There are numbers blocks that can be used to round numeric values and to execute a host of
mathematical functions like determining absolute value or square root of a number.

Data blocks store and retrieve numeric values in computer memory. You will need to use variables to
store data as your application executes. For example, if you create a game that challenges the player to try and
guess a randomly generated number, you will need to use a variable to store and refer back to this number.

Variables (a value that varies), can be used in conjunction with conditional programming logic to control
the execution of other code blocks. Variables can also be used to control the repeated execution of code blocks
embedded within code block loops. You can create and name custom variables blocks and assign them a
starting value. You can also modify their values during script execution. Other code blocks can retrieve variable
values and use them as input.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 26 of 155

Figure 12 shows a variable ‘count’ that has been created. For that, press the button,
then a pop up window as in Figure 11 shows up, where the variable name can be specified.

Figure 12: Creating the Variable Named ‘count’

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 27 of 155

• How to Create a Simple Addition Project

Create 3 variables with the name, a, b and sum. Then set the value of a to 5 and b to 10. Finally, set the
value of sum as the sum of a and b. The code is shown in the script area of Figure 13 and the result of the
operation can be seen in the stage area of Figure 13.

Figure 13: The Output for the Addition Project

1.2.7.8. Modularization
In Scratch, it is possible to create and define our own modules and use those modules whenever

required. It is provided in the ‘More Blocks’ option given in dark violet colour as shown in Figure 14.

Figure 14: The ‘More Blocks’ Code Block

Code

Output

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 28 of 155

Figure 15: An Example for the Define Code Block

A simple example on how to use this facility is shown in Figure 15 where a ‘jump’ module has been
created and defined under the ‘define’ function and later used in the code.

1.2.8. The Scratch Website

The most informative and helpful Scratch website is the Scratch site developed and maintained by MIT
located at http://scratch.mit.edu. This site is packed with helpful information, including documentation, video
tutorials, and forums where you can go to interact with and learn from other Scratch programmers from around
the world. Best of all, this site provides instant access to tons of Scratch projects, all of which you can
download, experiment with, and learn from.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 29 of 155

1.3. Raptor

1.3.1. Introduction

 Raptor is a simple to use tool to generate executable flowcharts. It helps to develop problem solving and
algorithmic thinking skills by easy visualization of the execution of a logic structure. It was originally
developed by and for the Department of Computer Science at the US Air Force Academy, but is now used for
CS education in over 28 countries on at least 4 continents and is freely distributed as a service to the CS
education community.

1.3.2. Installation

 For installing Raptor in your system, you will need to follow the following steps:

1. You can see links to download the latest Raptor package from the homepage
http://raptor.martincarlisle.com

2. You can download either a Windows version (preferred) from
http://raptor.martincarlisle.com/raptor_2014.msi or a Portable version from
http://raptor.martincarlisle.com/RaptorPortable_4.0_Revision_6.paf.exe

3. If you going to use the Windows version of Raptor, you will be required to have .NET 3.5+ installed
for Windows 8.

4. If you are going to use Raptor on a Linux machine, download the zip file from
http://raptor.martincarlisle.com/RAPTOR_exe.zip, extract it, and run the Raptor.exe file inside the
extracted folder using Mono Runtime. The set of functionalities available for the Linux version of a
raptor is somewhat limited to the Windows version.

1.3.3. Interface Overview

 The user interface of Raptor will look as shown in Figure 1 and Figure 2 below. It has two windows – a
main Raptor window and a Master Console.

The main Raptor interface is divided into five regions namely Menu, Toolbar, Symbols, Watch Window and
Workspace.

1. Menu
The contents of the Raptor menu and their corresponding functions/options are as follows:

1) File – Create a new file, open an existing file, print facilities etc.

2) Edit – Comment, Cut, Copy, Paste, Delete, Undo, Redo etc.

3) Scale – Different zoom options for the display.

4) View – Different view options for the interface.

5) Run – Run modes like Run step by step, Reset etc.

6) Mode – To choose among three modes available – Novice, Intermediate and Object Oriented.

7) Ink – To choose what color ink you want to draw around the flowcharts – just like MS Paint.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 30 of 155

8) Window – Different window arrangement modes.

9) Generate – To convert Raptor flowchart to computer programs in a set of computer languages like Ada,
C#, C++, Java and as a standalone executable application.

10) Help – An inbuilt self-help manual.

Figure 1: Main Raptor window

Figure 2: Master Console

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 31 of 155

2. Toolbar
The toolbar in Raptor has a set of frequently accessed menu items represented using icons.

3. Symbols
Symbols section given at the left of the main Raptor window displays a set of logical building blocks using
which you can build the flowchart. The set of symbols made available in Raptor are mentioned below
along with their purpose.

1) Assignment – To assign a value to a variable.

2) Call – To call a function.

3) Input – To receive an input from the user while execution.

4) Output – To output something to the user typically via the Master Console.

5) Selection – To implement a logical condition.

6) Loop – To implement repeated sets of logic statements.

4. Watch Window
Watch window displays the updated value stored in all variables during execution.

5. Workspace
This is where you build the flowchart using the elements from the Symbols section.

1.3.4. Simple flowchart building

 Let’s take an example (Example 1) of building a flowchart which takes two numbers as input to a flowchart
and gives their sum as the output. Here’s how we do it step by step.

1. Open Raptor. We can see both the main Raptor window and Master Console come up. As seen in Figure
3, the watch window will have the “Start” and “End” blocks by default.

Figure 3: Raptor Window and Master Console

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 32 of 155

2. We need to get the values of the two variables entered into the flow chart. So we need two “Input”
blocks added to the flowchart. Click on the “Input” block on the “Symbols” section and it would turn red as
in Figure 4 below. The part is shown rounded in a dark circle.

Figure 4: Selecting an “Input” block

3. Once the “Input” block turns red, click on the part of the flowchart where we want the block to be
placed. In our case, it will be on the “arrow” connecting the “Start” and “End” blocks. Once clicked, the
block will be placed there as shown in Figure 5 below.

Figure 5: “Input” block placed in the flowchart

4. Now, we need to configure the “Input” block to receive an input and to store it in a variable. To do that,
we should double click on the block and it would turn red and opens a menu as shown in Figure 6.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 33 of 155

Figure 6: “Enter Input” menu

5. In the “Enter Prompt Here” text box, we should enter the message (within double quotes) that we want
to print to the user while asking for the input. In the “Enter Variable Here” text box, we enter the variable
name where we want to store the value read. At last, press the “Done” button marked in the dark circle as
shown in Figure 7.

 Figure 7: Finishing the configuration part

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 34 of 155

6. Now, we do the same procedure (steps 2 to 5) for reading the second number. After that is done, the
Raptor window would look like Figure 8.

Figure 8: After entering both numbers

7. Now we need to do the operation of adding the values in the two variables and storing their sum in a
third variable, say “third_number”. We use the “Assignment” block from the “Symbols” section for this.
As before, we click on the block and then click on the position where we need it to be placed in the
flowchart – which is right under the second input block. The window looks like Figure 9 once this is done.

Figure 9: Adding “Assignment” block to the flowchart

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 35 of 155

8. We double click on the “Assignment” block to configure it to do the operations of finding the sum of the
two numbers and assigning it to the third variable. Please refer to Figure 10 to see how this is done. After
that click on the “Done” button.

Figure 10: Configuring “Assignment” block

9. Now we have to add the “Output” block to print the value stored in the third_variable. So we add the
“Output” block and configure it to print the value stored in “third_number”, as shown in Figure 11 below
and click the “Done” button.

Figure 11: Configuring “Output” block

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 36 of 155

10. Now go ahead and press the “Execute to Completion” button in the toolbar. It is shown inside a dark circle
in Figure 12 below.

Figure 12: The “Execute to Completion” button is shown encircled in the toolbar

11. Once the flowchart executing, the particular block under execution would be highlighted with a green
color outline as shown in Figure 13. Once the input blocks are reached, two input window would pop up one
by one asking you to “Enter the first number” and “Enter the second number” respectively. Fill in the text
boxes with their corresponding numbers and press the “OK” button.

Figure 13: The execution process

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 37 of 155

Please note that we can use the “Pause”, “Stop/Reset” buttons and the slider in the toolbar to control the
algorithm execution process and the speed of execution respectively.

12. Once execution is completed, the result is displayed in the Master Console along with the status of
execution, as shown in Figure 14.

Figure 14: The result displayed in the Master Console

It can also be noted that the “Watch Window” on the left now will be showing the latest values of all the
variables used during the execution process. This “Watch Window” will in fact be updated at real time
throughout the execution process.

1.3.5. Conditional Logic

 To show how implementing Conditional Logic is implemented in Raptor, let’s take an example
(Example 2) in which a value is read from the user and stored into a variable, say “a” and we need the
flowchart to add 1 to “a” if it less than or equal to 5, and subtract 1 from “a” if otherwise. To implement
conditional logic, the “Selection” block in the “Symbols” section is to be added to the flowchart. The
procedure involved is same as steps 2 and 3 in the above explained example. After adding the “Selection”
block, we need to configure it by double clicking on it and entering the condition check that we want to add.
Figure 15 shows how to configure the “Selection” block.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 38 of 155

Figure 15: Configuring the Selection block

 Once the condition is added in the window and the “Done” button is pressed, we need to add logic to the
“Yes” and “No” wings of the block in the flowchart. Once this is done, the flowchart would look like
Figure.16.

Figure 16: Assignment blocks added to the branches of Selection block

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 39 of 155

 On execution, the “Input” block would ask the user for an input and will proceed taking one of the
branches of the “Selection” block depending on the condition whether “a <= 5” or not. In the example shown
in Figure 17, the number 3 was read from the user, hence making the execution take the left “Yes” path from
the Selection block.

Figure 17: Selection block branching the execution according to the condition

 After execution, the result is as shown in Figure 18; the “Watch Window” shows the variable “a”s value
to be updated to a+1, i.e in this case, 4.

Figure 18: Updated value after execution

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 40 of 155

1.3.6. Loops - Repeated execution of a block

 Loops are used when we need a block of logic statements to run more than once. Loops logically require
a termination condition which determines when the execution control moves out of the loop. In Raptor, loops
are implemented using the “Loop” block in the “Symbols” section.

 Let’s take an example (Example 3) for illustrating the use of “Loop” block. We will try implementing a
simple counting loop which will count from 1 to 10 and keep printing the number from inside the loop. A
variable, say “a” which is initialized to “1” will be used for storing the values counted. The initialization steps
until loop start is similar to the previous examples, so let’s skip to the portion where the loop logic is to be
added. As usual, click on the “Loop” block in “Symbols” and click on the part of the flowchart where we want
to add it to. Once we do this, the window would look like Figure 19.

Figure 19: Adding a “Loop” block

 As we can see from Figure 19, we have to configure the loop to check a condition on NOT satisfying
which the loop proceeds to the next iteration. If the condition turns to be true, then the execution flow comes
out of the loop.

 For configuring the loop condition, we double click on the diamond box and a configuration window
opens up as shown in Figure 20. We should enter the condition in the text box provided and press the “Done”
button.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 41 of 155

Figure 20: Configuring the “Loop” block

 Now, we add the “Output” block to print the value of the variable “a” and the logic to increment the
variable’s value inside the loop logic. This is shown in Figure 21.

Figure 21: Adding the increment logic and “Output” block inside the loop construct

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 42 of 155

 Once that is done, we can go ahead and execute the flowchart using the “Execute to Completion” button.
We can see the results as shown in Figure 22.

Figure 22: The output of execution

 Please note that in the “Watch Window” section, the value of the variable “a” has been updated to “11”
which account to the last “increment” operation after which the control exited from the loop.

1.3.7. Functions

 Prerequisite: Knowledge about modularity, abstraction and how functions work.

 Functions are used when a set of logic blocks are designed for serving a specific well-defined task. The
function can be “invoked” from the main flowchart along with passing some data to it, followed by the
execution of the function and a “return” of a value from the function, but please note that both “data passing”
and “returning” are not mandatory.

 Let’s take the Example 3 explained above to illustrate how functions are implemented in Raptor. We
will modify the same example to the “adding” part inside a function “add”. Since the “input” parts are already
explained in the Example 3 section, we will skip to the portion where “invoking” the function is done
(generally called as a “function call”). Before that the flowchart will look as shown in Figure 23.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 43 of 155

Figure 23: The flowchart before function call is added

 Implementing the function call requires creating a new “Procedure” in the main flowchart. We do this
by right clicking on the “main” tab and selecting “Add procedure”, as shown in Figure 24.

Figure 24: Adding a new function

 Once we click on that option, a configuration window would open up where we enter the name of the
function, the variables we intend to pass to it (Input checkbox should be checked) and the variable that the
function is supposed to return (Output checkbox should be checked), as shown in Figure 25. Once this is done,
click on the “OK” button.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 44 of 155

Figure 25: Configuration the function

 A new tab having the function name we gave (“add”) would be displayed with parameters mentioned in
the “Start” block. Please see Figure 26.

Figure 26: Function open in separate tab

Now, we add the logic to add the two numbers and to assign the sum into the variable “result”. This is to
be done with the help of “Assignment” block in the “Symbols” section. Once this is done, the flowchart would
look like Figure 27.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 45 of 155

Figure 27: Adding logic inside function

Now, we should go back to the “main” tab and add a call to invoke the function “add”. This is done
using the “Call” block from the “Symbols” section which we add to the flowchart as shown in Figure 28.

Figure 28: Adding the “Call” block to invoke function

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 46 of 155

Now, we configure the “Call” block to call the function “add” along with the parameters to be passed to
it which in our example is “first_number” and “second_number”. We do this by double clicking the “Call”
block and filling these details in the text boxes available and clicking the “Done” button, as shown in Figure 29.

Figure 29: Configuring the “Call” block to invoke function “add” with parameters

After the configuration is done, the flowchart would look as shown in Figure 30.

Figure 30: Configuring the “Call” block to invoke function “add” with parameters

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 47 of 155

Now, we add an “Output” block to print the output returned by the function. Please refer Figure.31.

Figure 31: “Output” block added to the flowchart

Now, we can go ahead and run the program. The control flow would pass to the “add” tab and return to
the “main” tab during execution. The results would be as shown in Figure 32.

Figure 32: The output of execution

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 48 of 155

2. INFORMATION AND DATA

2.1. Data Handling in Spread Sheets

Start Excel and a screen similar to the one below will appear. The main body of the screen will contain
columns labeled with letters (A, B, C...) and rows labeled with numbers (1, 2, 3...). A cell is a space where
numbers, formulae or text can be entered. Each cell has a designation that gives its location such as F22
(column F, row 22) or CC115 (column CC, row 115).

Above the main body are two white regions. The left region, the Name box, indicated which cell or
region (such as a chart) is active (selected). The right region is a Formula bar. Cell contents are displayed here.
If you activate a cell that has a number generated by a formula, the value will appear in the cell but the formula
will appear in the formula bar.

You enter data into a cell by placing the cursor in the cell, clicking, and typing. You will notice that
what you type appears in the cell and in the formula bar. Data is registered by hitting Enter or using any cursor
key to change cell location. If you need to edit the contents of a cell, click on the cell and then on the formula
bar; you can then change the entry in the cell or in the formula bar. Register as before.

Above the Name box and Formula bar are two rows of icons called the Formatting and Standard
Toolbars. Some of the icons will resemble ones you have seen in word processors and others are unique to
spreadsheets. If you place the cursor on an icon and wait a few seconds, the name or function of the icon will be
displayed. This tool bar can be customized with additional features you frequently use by going to
View/Toolbars/Customize. Above the tool bar is the Menu bar. Each item here has a pull-down menu of

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 49 of 155

operations. Note that the menu item that reads Data on the menu bar (on the graphic above) changes to Chart
when you have a chart active.

If you wish to format a whole column or row of cells, click on the column letter or row number and the
entire column or row will be highlighted. Any change you make, such as defining the numerical display (under
Format) or deleting, will apply to all of the highlighted cells. If you right-click the letter or number (or any cell)
you will get an abbreviated menu of common operations.

Look at the sample sheet. You will notice that cell D2 contains the formula =A2^3. If you copy this
formula and paste it into D3, Excel will use the value in cell A3 rather than A2 for the calculation. If you paste
into cell D4 it will use A4. This is great if you want to extend a calculation for a whole series of data.

Bring up Excel on the computer and a screen like the one below will appear. This is called a
“worksheet” in Excel and since it is active, the word “Data” appears as a pull-down menu. Many of the toolbar
icons are similar to ones used in word processing programs. Some of the ones more useful in science and math
are labeled below.

The first task is to enter your data into the columns. For ease of graphing, try to place your independent
variable in the first column. You may want to label the first cell in each column (A1, B1, C1, etc.) with the
variable names.

Insert Functions: Using the Insert Function (fx icon) or from the toolbar, which lists some common functions
as shown below, a vast number of mathematical and statistical functions can be placed into a formula.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 50 of 155

When you select a function, a brief explanation with syntax is given in the lower part of this screen as
seen below on the Insert Function pop-up screen below.

This screen shows the common logarithm function under Math.

Further explanation of the function is available by clicking on the “Help on this function.”

Select the function and click OK. This will bring up another pop-up window with instructions to follow. Or you
can type the function name in the formula bar directly.

Remember to follow the syntax. Square root, raise to a power, average, and standard deviation are a few other
examples of available operations.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 51 of 155

2.2. Data handling – Using Formula Bar

Enter the following data in the Excel sheet maintained for the daily expenses in a family for a Month. Use
the same data for all the formulae.

Sample spread sheet

2.2.1. Data handling - Sum function

Explanation

 To add a set of given values in the spread sheet

 Formula in the spread sheet:

SUM(number 1,[number 2], …[number n]) or

 SUM(cell location of number 1 : cell location of number n)

 Where number1, number2, number n are the values to be summed

Example: To add the set of values given in the sample sheet (How much spent (column E))

 Steps:

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text SUM.
 3. In E10 type =SUM(E2:E8) and press enter key.
 4. The result displayed in E10 is 8710

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 52 of 155

Screen shot:

2.2.2. Data handling – Average function

Explanation

 To calculate the average of given values in the spread sheet

 Formula in the spread sheet:

AVERAGE(number 1,[number 2], …[number n]) or

 AVERAGE(cell location of number 1 : cell location of number n)
 Where number1, number2, number n are the values used to find the average

Example: To average the set of values given in the sample sheet (How much spent (column E))

 Steps:

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text Average.
 3. In E10 type =AVERAGE(E2:E8) and press enter key.
 4. The result displayed in E10 is 1244.285714
Screen shot:

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 53 of 155

2.2.3. Data handling – Count Function

Explanation

 To count a set of given values in the spread sheet

 Formula in the spread sheet:

COUNT(number 1,[number 2], …[number n]) or

 COUNT(cell location of number 1 : cell location of number n)

 Where number1, number2, number n are the values to be counted

Example: To count the set of values given in the sample sheet (How much spent (column E))

 Steps

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text Count.
 3. In E10 type =COUNT(E2:E8) and press enter key.
 4. The result displayed in E10 is 7
Screen shot:

2.2.4. Data handling – Maximum function

Explanation

 To find the maximum of a set of given values in the spread sheet

 Formula in the spread sheet:

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 54 of 155

MAX(number 1,[number 2], …[number n]) or

 MAX(cell location of number 1 : cell location of number n)

 Where number 1, number 2, number n are the values used to find the maximum

Example: To find the maximum of the given values in the sample sheet (How much spent (column E))

Steps

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text MAX.
 3. In E10 type =MAX(E2:E8) and press enter key.
 4. The result displayed in E10 is 2700

Screen shot:

2.2.5. Data handling – Minimum function

Explanation

 To find the minimum of a set of given values in the spread sheet

 Formula in the spread sheet:

MIN(number 1,[number 2], …[number n]) or

 MIN(cell location of number 1 : cell location of number n)

 Where number 1, number 2, number n are the values used to find the maximum

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 55 of 155

Example: To find the Minimum of the given values in the sample sheet (How much spent (column E)) Steps

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text MIN.
 3. In E10 type =MIN(E2:E8) and press enter key.
 4. The result displayed in E10 is 350
Screen shot:

2.2.6. Data handling – If function to check a condition

Explanation

 To check a particular conditions using if function

 Formula in the spread sheet:

 IF(Logical_test,[value_if_true],[value_if_false])
 It displays value_if_true if logical_test value is true otherwise value_if_false will be displayed

Example: To apply if condition for a given value in the sample sheet (How much spent (column E))

Steps

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text If.
 3. In E10 type =IF(E2>1500,”yes”,”no”)) and press enter key.
 4. The result displayed in E10 is yes

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 56 of 155

Screen shot:

2.2.7. Data handling – COUNTIF function to count based on a condition

Explanation
 To count a particular number based on a criteria using countif function

 Formula in the spread sheet: COUNTIF(range,criteria)

 Will display the count based on a criteria

Example: To apply countif condition for a value in the sample sheet (How much spent (column E))
Steps
 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text countIf.
 3. In E10 type =COUNTIF(E2:E8,800) and press enter key.
 4. The result displayed in E10 is 1
 Screen shot:

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 57 of 155

2.2.8. Data handling – SUMIF function

Explanation

 To sum a set of values based on a a particular criteria using SUMIF function

 Formula in the spread sheet: SUMIF(range, criteria,[sum_range]))
 Will display the sum of values in the given range based on a criteria

Example: To apply sumif condition for a set of values in the sample sheet (How much spent (column E))

Steps

 1. Enter the data as shown in the above sample spread sheet.
 2. In D10 location types the text Sumif.
 3. In E10 type =SUMIF(E2:E8,”>1500”) and press enter key.
 4. The result displayed in E10 is 4310

Screen shot:

2.2.9. Data handling – user defined formulae

Let’s calculate the surface area and volume of cubes of varying edge length as outlined below.

Example

1. Enter the data below into column A: Label length in Al and then start the data in A2: 1, 2, 3, ... to 10

The second task is to transform or manipulate data.

2. In B1 type “Area” and in B2 place the formula =6*A2^2 and then press the enter key. All calculations with a
formula must start with an “=” in the cell. This calculates the surface area of the cube. Grab the lower right hand
corner of the cell and drag down the column. This will copy the formula to the covered cells. See the screen
shot given below.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 58 of 155

3. In C1 type “Volume” and in C2 place the formula =A2^3 and then press the enter key. This calculates the
volume of the cube. Grab the lower right hand corner of the cell. When the cursor changes form to +, drag the
formula down the column.

4. The data and two calculated quantities, surface area and volume, should look like the screen shot above when
you are done.

If you right click on the column heading (A, B, C...) you can format the cells for the number of decimal places
or significant figures needed. This is very important when considering data generated by experimental
measurements in science.

2.3. Exercises

LAQ2.1. You have a monthly income of Rs 1100. Your monthly outgoings are Rent, Rs 500, Food, Rs
300, Electricity, Rs 40, Phone, Rs 60, and Cable TV, Rs 30. Make out a clear worksheet with the
Monthly Income, the Monthly Expenses listed and summed, the remainder (what’s left over each
month) calculated, and the amount left over per day (assuming 30 days in a month)

LAQ2.2. A home maker wants to maintain the monthly expenses using an Excel sheet.

Date Details for the expenditure Amount spent
01-05-2015 Rent 5000
01-05-2015 Servant maid 2000
02-05-2015 Electricity Bill 1000
03-05-2015 Grocery 5000
 Total 13000

Note: Create a sub total of the amount spent for every 10 days and calculates the average amount
spent for the month of May.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 59 of 155

LAQ2.3. A faculty handling “Computational thinking” subject wants to publish internal marks for the
students using an Excel Sheet.

S.no Roll No Name C1 (25) C2 (25) C3(40) C4(10) Internals(100)
1 001 Rama 12 12 40 10 74
2 002 Sita 12 12 30 10 64
3 003 Tom 10 10 40 10 70

Calculate minimum internal mark scored, maximum internal mark scored, sum of the each
component marks for a student, sum of all the internal marks scored by the students, average
mark of the class, standard deviation, and median. Count the number of students who scored less
than 50, 51 – 60, 61 – 70, 71 – 80, 81 – 90, 91 -100. Finally sort the details in descending order
based on the internal marks.

LBQ2.4. Create the worksheet below. Type in the labels, the student numbers, the test results (which are
out of 100), and the test weights. The total marks and the class averages for each test must be
calculated. The class average for test is simply the average of the marks obtained in that test.
While calculating the total marks - you must use the test weights. The tests have the following
weights: 25% of the total marks for test1 & test2 and 50% of the total marks for test 3. Changing
the weights in the cells should change the corresponding weighted values.

Now format the test weights so that they are shown as percentages. Simply select the cells,
choose FORMAT|CELLS, and format them as “Percentage”. Select the cells from A4 to E9 and
choose DATA|SORT. Select that you wish to sort according to the ‘Total’ column and that you
want the results sorted in Descending order. You should end up with

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 60 of 155

LAQ2.5. You are looking to buy a car. You are considering two options: to buy a second hand car and
keep it for 10 years, or to buy a new car and keep it for 4. The details of the costs of each option
are given below. The calculated values are shown in Bold. The depreciation per year is simply
the difference between the purchase price and the resale price divided by the number of years.
The total running costs per year is the sum of the service/repair costs, the fuel costs, the tax, and
the insurance. The total cost per year is the sum of the depreciation and the running costs. Note

that the underlining can be done with one of the options under the Borders toolbar button .

 A third option is to purchase the new car for €17,000 and run it for 14 years after which it will be
worth €1000. The average service/repairs cost per year will be about €320. The average fuel cost
per mile over the 14 years will be about €0.18. The tax and insurance will be the same. Calculate
the Total cost per year for Option 3.

LBQ2.6. A car was accelerated up to 120 kmph and the speed was measured at two second intervals. The
results are,

You will use this data to calculate the acceleration of the car and how it changes over time.
Acceleration is the rate of change of velocity (or speed if you’re not considering the direction of
the motion). You can estimate it from the values in the table. The speed changed from 0 kmph to
35 kmph in the first 2 seconds so we can assume that the acceleration at time 0 s was
approximately (35-0)/2 kmph per second. Use Excel to calculate the acceleration at the other
points in time – first enter the values above and then add a new column for the acceleration. You
do not have to calculate the acceleration at time 12 seconds. Graph the acceleration values
against time. Label the graph correctly.

Time (s) Speed (kmph)
0 0
2 35
4 60
6 78
8 95
10 110
12 120

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 61 of 155

LBQ2.7. Given the speed data from the table in Exercise 4 above, calculate how far the car has travelled at
each point in time. How will you do this?

If a car is going at 80 kmph for 2 hours, how far has it travelled? – 80 kmph * 2 hours = 160 km.

If a car starts off at 40 kmph and ends up at 80kmph after 2 hours, how far has it travelled in the
two hours? The answer is that we don’t know. A reasonable way of estimating the answer,
however, is to take the average speed ((40 + 80) / 2 = 60 kmph) and multiply it by 2 hours.

In this example you can estimate how far the car has travelled in each two second interval. Note
that there are 3600 seconds in an hour. Add these values up to find out how far it has travelled at
any point in time. The solution is shown below. Plot the distance travelled against time.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 62 of 155

3. LOGIC – BOOLEAN AND SIMPLE PROPOSITIONAL LOGIC

3.1. True/False Propositions – Checking Equality

Explanation

It checks if two quantities are equal. If the two quantities are equal, True is displayed. If the quantities are
not equal, displays False

Formula in spreadsheet: Value1 = Value2

where Value1, Value2 are values contained in two cells.

Example: To check whether the number 5 is equal to the number 5.

 Steps:
1. Open a spread sheet
2. Type the number 5 in the cell in row 1 under column A
3. Type the number 5 in the cell in row 1 under column B
4. Click the cell in row 1 under column C and type =(A1=B1) and press Enter key
5. The result displayed in the cell C1 is TRUE

Screen Shot:

3.2. True/False Propositions – Checking Inequality

Explanation

It checks if two quantities are not equal. If the two quantities are not equal, True is displayed. If the
quantities not equal, displays False

Formula in spreadsheet: Value1 <> Value2

 where Value1, Value2 are values contained in two cells.
Example: To check the inequality of two numbers 5 and 6.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 63 of 155

 Steps:
1. Open a spread sheet
2. Type the number 5 in the cell in row 2 under column A
3. Type the number 6 in the cell in row 2 under column B
4. Click the cell in row 2 under column C and type =(A1<>B1) and press Enter key
5. The result displayed in the cell C2 is TRUE

Screen Shot:

3.3. NOT – Negation

Explanation

Converts a non-zero (TRUE) value to zero (FALSE) and a zero (FALSE) value to non-zero
(TRUE) value

Formula in spreadsheet: =NOT(cellvalue)

Example: To convert a non-zero number to TRUE and vice versa.

 Steps:
1. Open a spread sheet
2. Type the number 0 in the cell in row 1 under column A
3. Type the number 5 in the cell in row 2 under column A
4. Click the cell in row 1 under column B and type =NOT(A1) and press Enter key
5. The result displayed in the cell B2 is TRUE
6. Click on B1 cell and a dark rectangle highlights the cell
7. Click on the small square at the right bottom corner of the rectangle
8. Click and hold your left mouse button and drag the above square till cell B2
9. FALSE is displayed in B2.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 64 of 155

Screen Shots:

Note: The values TRUE and FALSE can be converted into Boolean values 0 and 1 by multiplying the
Formula by 1 i.e., =NOT(cellvalue)*1 would display the result as 1 and 0 as shown in the below screen shot:

3.4. AND – Conjunction

Explanation

The result is TRUE only if all the cell values are non-zero (TRUE)

 Formula in spreadsheet: =and(cellvalue1,cellvalue2,…cellvalue n)

Example: To check the conjunction between two columns for different combinations of cell values

 Steps:
1. Open a spread sheet
2. Type the numbers under column A (from A2) as given in the below screen shot
3. Type the numbers under column B (from B2) as given in the below screen shot

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 65 of 155

4. Under column C2 write the formula =AND(A2,B2)
5. The result displayed in the cell C2 is TRUE
6. Click on C2 cell and a dark rectangle highlights the cell
7. Click on the small square at the right bottom corner of the rectangle
8. Click and hold your left mouse button and drag the above square till cell C5
9. All the cells are filled with appropriate conjunction results

Screen Shot:

3.5. OR – Disjunction

Explanation

The result is TRUE even if one of the values are non-zero (TRUE)

 Formula in spreadsheet: =or(cellvalue1,cellvalue2,…cellvalue n)

Example: To check the disjunction between two columns for different combinations of cell values

 Steps:
1. Open a spread sheet
2. Type the numbers under column A (from A2) as given in the below screen shot
3. Type the numbers under column B (from B2) as given in the below screen shot
4. Under column C2 write the formula =OR(A2,B2)
5. The result displayed in the cell C2 is TRUE
6. Click on C2 cell and a dark rectangle highlights the cell
7. Click on the small square at the right bottom corner of the rectangle
8. Click and hold your left mouse button and drag the above square till cell C5
9. All the cells are filled with appropriate disjunction results

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 66 of 155

Screen Shot:

3.6. Exercises

LAQ3.1. The electoral commission of India is in the process of consolidating and updating the names of

people in a particular area. School teachers are going around in each area collecting the names of
people in each house one after the other and that list is checked with the existing list in the electoral
office to find if both the lists match or else the list are updated with the names collected by the
teachers. Devise a mechanism to compare the two lists in case tenants of certain houses have left and
new people have moved in.

LAQ3.2. Excel University provides Computers to its faculty members and the assets team performs a

periodical stock taking to check if the same machine is still used by the faculty or it has been
replaced by some other machine for some reason by the systems team. A machine could be changed
if it is upgraded or it is repaired or if it is replaced by some other. A copy of the list resides in the
assets office and it is checked with the list noted by the stock taker and those machines which do not
match with the old list need to be updated with the new details. Prepare a data sheet containing cabin
numbers (numbered F1, F2, F20) machine models (Excelsys1100,…) and verify with another set
similar data obtained by the stock taking operation and indicate the matching and non-matching
entries in the sheet which needs updation.

LBQ3.3. Solve the problem Q3.1 in previous section using inequality operator.

LBQ3.4. Solve the problem Q3.2 in previous section using inequality operator.

LAQ3.5. An Un-interrupted Power Supply (UPS) works on the fact that the presence of electricity turns off

the UPS and the absence of electricity turns on the UPS. Model this operation of an UPS using logic.

LBQ3.6. Mr. Anthony is very much concerned about the depletion of energy reserves and has installed in his

home both geyser and solar water heater in his bathroom. When the day is hot and the solar heater is
heating, the geyser remains off and when the day is cloudy, the geyser is on. Model this scenario
using NOT logic.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 67 of 155

LBQ3.7. Michael works as a marketing executive and spends his whole day travelling around getting orders

for his company. Sometimes the trips are short and often times he has to travel large distances on his
two wheeler. He decides his outfit based on the climate so that he is comfortable when he is at work.
The decision is made as follows: If the day is cold and also it is snowing, he wears a parka. If it is
cold and not snowing, he wears a jacket. If the day is not cold, He wears formal outfit. Design an
automatic decision making system to help Michael to choose his outfit, given a list of day type
combinations (cold and snowing).

LBQ3.8. Simson works as a boiler controller in ‘Powerful Boiler Industries’ as a boiler operator for power

generation. There are certain guidelines for the operation of the boiler to work in standard operating
conditions. Any kind of abnormal function is notified by a temperature indicator which measures the
temperature in the boiler and sounds an appropriate alarm. If the temperature falls below 140 F for 5
minutes and the thermostat is not on to turn on the heating burner then the ‘under heat alarm’
signals. If the temperature is between 140 F and 200 F and the thermostat calls for burner off, then
the ‘normal alarm’ signals. If the temperature is greater than 200 F and the time is greater than 10
minutes and the thermostat is not calling for burner off, ‘over heat alarm’ signals. Model the outputs
for this scenario using sample temperatures, time and burner inputs.

LAQ3.9. A physical electrical circuit consists of two voltages Va and Vb which can take high values or low

values. High voltage signifies that current is flowing; low voltage signifies that there is no current.
When any one of the voltages is high it signifies that current is flowing and hence caution must be
exercised. Model this electrical problem using propositional logic.

LBQ3.10. A person is eligible for obtaining Gas subsidy if he has submitted his Aadhar card or has a bank

account. ‘Efficient Gas Agency’ is in the process of verifying whether its consumers have submitted
either of the two documents and come up with a list whether a customer is eligible for subsidy or
not. The data sheet consists of Consumer Number, Consumer Name, Aadhar card Submission status
and Bank account number submission status. Design a strategy to determine the list of consumers of
Efficient Gas Agency who are eligible for gas subsidy and those who are not.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 68 of 155

4. SELECTION AND REPETITION TECHNIQUES

4.1. Conditional statements

Conditional statements ask questions about the program state to choose from a set of different sequences
of commands. In Scratch for example, you can determine whether you are at the edge of the stage with the if
touching edge control block. The following example (implemented within a forever loop on the shark in the
conditional project) causes the sprite to think each time it reaches the edge of the stage before bouncing off
again:

Example -1

Example -2

The example conditional project implements this on the fish sprite with a corresponding change of
costume on the shark so it looks like the shark eats the fish when they touch:

Pressing the green flag will need to restore the fish sprite back to life by showing the sprite, setting the initial
position and size and starting the forever loop:

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 69 of 155

4.2. Control Flow

Algorithms use control flow to make decisions about which order to do things. They can repeat actions
or start new actions based on new information. Computer programs use sequence, selection and iteration to
control the flow of the program. These elements allow the program to make choices, change direction or repeat
actions.

Example: To find student with GPA greater than or equal to 3.0

4.3. Nested Control Flow

A single selection-control statement can make a choice between one or two choices. If you need to make

a decision that involves more than two choices, you need to have multiple selection control statements.

For example, if you are assigning a letter grade (A, B, C, D, or F) based on a numeric score, you need to

select between five choices, as shown below. This is sometimes referred to as "cascading selection control," as
in water cascading over a series of waterfalls.

Example: To get the marks and display the grade

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 70 of 155

4.4. Repetitive Control Structures -1

A Loop (iteration) control statement allows you to repeat one or more statements until some condition
becomes true. This type of control statement is what makes computers so valuable. A computer can repeatedly
execute the same instructions over-and-over again without getting bored with the repetition.

One ellipse and one diamond symbol is used to represent a loop in RAPTOR. The number of times that
the loop is executed is controlled by the decision expression that is entered into the diamond symbol. During
execution, when the diamond symbol is executed, if the decision expression evaluates to "no," then the "no"
branch is taken, which always leads back to the Loop statement and repetition. The statements to be repeated
can be placed above or below the decision diamond. To understand exactly how a loop statement works, study
the example RAPTOR program to the right and notice the follow things about this program:

• Statement 1 is executed exactly once before the loop (repetition) begins.
• Statement 2 will always be executed at least once because it comes before the decision statement.
• If the decision expression evaluates to "yes," then the loop terminates and control is passed to Statement
• If the decision expression evaluates to "no," then control passes to Statement 3 and Statement 3 is

executed next. Then control is returned back up to the Loop statement which re-starts the loop.
• Note that Statement 2 is guaranteed to execute at least once. Also note that Statement 3 is possibly never

executed.

Start

"Enter your grade
percentage"
GET Score

PUT "Your letter grade is "

Score >= 90

PUT "A"¶ Score >= 80

PUT "B"¶ Score >= 70

PUT "C"¶ Score >= 60

PUT "D"¶ PUT "F"¶

NoYes

No Yes

No Yes

NoYes

End

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 71 of 155

There are too many possible executions of this example program to list them all, but a few of the

possibilities are listed in the following table. Make sure you can fill in fourth column with the correct pattern.
Possibility 1 Possibility 2 Possibility 3 Possibility 4
Statement 1
Statement 2
Decision ("yes")
Statement 4

Statement 1
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("yes")
Statement 4

Statement 1
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("yes")
Statement 4

(do you see the
pattern?)

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 72 of 155

In the RAPTOR example above, "Statement2" could be removed, which means that the first statement in
the loop would be the "Decision" statement. Or "Statement2" could be a block of multiple statements. In either
case the loop executes in the same way. Similarly, "Statement3" could be deleted or be replaced by multiple
statements. In addition, any of the statements above or below the "Decision" statement could be another loop
statement! If a loop statement occurs inside a loop, we called these "nested loops."

It is possible that the "Decision" statement never evaluates to "yes." In such a case you have an "infinite

loop" that will never stop repeating. (If this ever happens, you will have to manually stop your program by
selecting the "stop" icon in the tool bar.) You should never write statements that create an infinite loop.
Therefore, one (or more) of the statements in the loop must change one or more of the variables in the
"Decision" statement such that it will eventually evaluate to "yes."

Input Validation Loops

One common use for a loop is to validate user input. If you want the user to input data that meets
certain constraints, such as entering a person's age, or entering a number between 1 and 10, then validating the
user input will ensure such constraints are met before those values are used elsewhere in your program.
Programs that validate user input and perform other error checking at run-time are called robust programs.

A common mistake made by beginning programmers is to validate user input using a selection

statement. This can fail to detect bad input data because the user might enter an invalid input on the second
attempt. Therefore, you must use a loop to validate user input.

The following example RAPTOR program validates user input. Hopefully you see a pattern. Almost

every validation loop that you write will include an input prompt, a decision, and an output error message.

Example: Read age of students and check whether it is valid

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 73 of 155

4.5. Repetitive Control Structures -2

Example : To count the number of positive integers entered

Number_positive ← 0

"Please enter you data value.
Enter -999 to stop."

GET Value

Value = - 999

Value > 0

Number_positive ←
Number_positive + 1

NoYes

PUT "You entered " +
Number_positive + " positive

values."¶

Yes

No

Loop

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 74 of 155

4.6. Exercises

LAQ4.1. If a user enters a vowel, number or any other character the user gets fixed points in a game. 5
points for vowel, 10 points for number and 0 for any other character. Display the points scored
based on the character.

LAQ4.2. User may type uppercase or lowercase letters. When a college is processing admission forms it
becomes difficult to process lowercase and uppercase letters. When a user types a character if it
is lowercase case convert it to uppercase.

LBQ4.3. A game is devised for learning the nature of roots of a quadratic equation based on the
coefficients entered. Based on the coefficients, compute discriminant (b2 -4ac) and check if the
equation has real, imaginary or equal roots. If it is equal roots no points are rewarded. If real
roots 20 points are awarded and if it is imaginary 10 points are awarded. Compute the points for
a user.

LAQ4.4. Classify a person as Overweight, Normal or Underweight based on the Body Mass Index.

LAQ4.5. Given x-coordinates and y-coordinates find the quadrant in which the point lies. If two points are
given find if they form a line.

LBQ4.6. The consistency of a soil can be determined by field tests in which the soil is evaluated in place,

or by lab tests on samples that have been carefully handled to avoid remolding. The unconfined
compression test is often used as an indication of consistency. In practice, the relative terms soft,
medium, stiff, very stiff, and hard are applied to describe consistency. Get the shear strength and
classify soil into different consistencies Soft, Medium Stiff, Stiff Very Stiff.

Shear Strength N/m2 Consistency
Less than 24500 Soft
24500-49000 Medium Stiff
49000-98000 Stiff
98000-196000 Very Stiff
Greater than 196000 Hard

LAQ4.7. Suppose data giving the living areas and prices of houses from NewFoundLand are the
following. Based on the budget of a customer find the Living area he/she can afford. If it
does not fit in his/her budget ask the customer to enter another budget and so on.

Living area Price
2100 14 lakhs
1500 11 lakhs
3100 20 lakhs

LBQ4.8. Voting Machine Company Live bold has discovered a security hole in their machines! In 2008, a

few nefarious individuals discovered that certain numeric pass codes would allow access to vote
counts for districts all across the country. As it turns out, these special numbers, called powerful
numbers, all have a certain property. A powerful number is a positive integer m, such that for
every prime number p dividing m, p2 also divides m. In order to fix this breach, Live bold needs
to be able to find all the powerful numbers in a certain range, and they have enlisted you to help.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 75 of 155

LAQ4.9. Find the smallest marble from a collection of marbles.

LAQ4.10. A basket ball selection is conducted in RichValley School. Find the tallest student in each class.
He/She will be selected as member of the basketball team.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 76 of 155

5. RECURSION AND FACTORING TECHNIQUES

5.1. Recursion

Recursion is the process a procedure goes through when one of the steps of the procedure involves
invoking the procedure itself. A procedure that goes through recursion is said to be 'recursive'.
One way to think about recursion:

• When a recursive call is made, the method clones itself, making new copies of:
o the code
o the local variables (with their initial values),
o the parameters

• Each copy of the code includes a marker indicating the current position. When a recursive call is made,
the marker in the old copy of the code is just after the call; the marker in the "cloned" copy is at the
beginning of the method.

• When the method returns, that clone goes away, but the previous ones are still there, and know what to
execute next because their current position in the code was saved (indicated by the marker).

Definition
Base case: The case for which the solution can be stated non‐recursively
General (recursive) case: The case for which the solution is expressed in terms of a smaller version of itself
Recursive algorithm A solution that is expressed in terms of (a) smaller instances of itself and (b) a base case

Sample Problems

Problem #1 – Dudeney's Cows

If a cow produces its first she-calf at age two years and after that produces another single she-calf every
year, how many she-calves are there after N years, assuming none die?

let N = number of newborn she-calves,
I = number of one-year-old she-calves, and
C = number of cows (2 years old or older)

 year N I C
 0 1 0 0

Then the next year, the newborn just ages. That is, to find I in the next year, just take N of the previous year,
I(k) = N(k-1)
So,

year N I C
0 1 0 0
1 0 1 0

Then the next year, the infant grows into a cow, old enough to have a she-calf. And, just at the end of year 2,
the cow is 2 years old, so there's an infant born ... so we end up with

year N I C
0 1 0 0
1 0 1 0
2 1 0 1

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 77 of 155

Before we try to jump to a formula for those, let's do another couple years. The next year there'll be one more
newborn (coming from the 1 cow), and one infant (the newborn ages), and one cow (the cow survives), so we
get

year N I C
0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 1

 Then there'll be two newborns the next year (one from the infant coming of age, and one from the
cow), one infant (from the newborn aging), and two cows (one from the infant coming of age, and one from the
cow surviving), so we get

year N I C
0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 1
4 2 1 2

 That is, newborns come from cows and infants (who come of age):
N(k) = I(k-1) + C(k-1) and cows come from infants and the surviving cows, (k) = I(k-1) + C(k-1) Now we can
continue plugging in, summing previous infants plus cows to get newborns and cows for the new year, and
taking previous new borns and making them infants:

year N I C
0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 1
4 2 1 2
5 3 2 3
6 5 3 5
7 8 5 8

This is an application of Fibonacci numbers. After Nth year number of cows can be found out using

Fibonacci number formula. The Fibonacci numbers are defined as follows,

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 78 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 79 of 155

Problem #2 – Permutations Calculator (nPr)

The Permutations Calculator will find the number of sub-sets that can be taken from a larger set.
However, the order of the subset now matters. The Permutations calculator will find the number of sub-sets
that can be created including sub-sets of the same items in different orders.

Permutations Formula

P(n,r) = n! / (n - r)!

Calculate the permutations for P(n,r) = n! / (n - r)!. "The number of ways of obtaining an ordered subset of r
elements from a set of n elements."

Permutation Problem 1: At a High School Track meet the 400 meter race has 12 contestants. The top 3 will
receive points for their team. How many different permutations are there for the top 3 from the 12
contestants?

For this problem we are looking for an ordered sub-set 3 contestants (r) from the 12 contestants (n). We must
calculate P(12,3) in order to find the total number of possible outcomes for the top 3.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 80 of 155

P(12,3) = 12! / (12-3)!=1,320 Possible Outcomes

Permutation Problem 2: An NFL team has the 6th pick in the draft, meaning there are 5 other teams
drafting before them. If the team believes that there are only 10 players that have a chance of being chosen in
the top 5, how many different orders could the top 5 be chosen?

For this problem we are finding an ordered sub-set of 5 players (r) from the set of 10 players (n).

P(10,5)=10!/(10-5)!= 30,240 Possible Orders

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 81 of 155

Problem #3 – Sum of first n natural numbers

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 82 of 155

Sum of first 10 natural numbers

1+2+3+4+5+6+7+8+9+10

10 + sum of first 9 natural numbers 1+2+3+4+5+6+7+8+9+10

19 + sum of first 9 natural numbers 1+2+3+4+5+6+7+8+9+10

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 83 of 155

Problem #4 – Student selection problem

Imagine that we have a teacher who wants to choose 10 students from a class of 25, to participate in a
special project. Assuming that each student is unique in his/her own way. How many different groups of
students can be chosen?

This is a classic problem using binomial coefficients that is often encountered in combinatorics for determining
the amount of variety in a solution, giving insight as to the complexity of a problem. In general, if we have n
items and we want to choose k items, we are looking for the solution of how many groups of k-elements can be
chosen from the n elements. The expression is often written as follows and pronounced "n choose k":

Assuming that n is fixed, we can vary k to obtain a different answer. The simplest solutions for this problem are
when k=0 or k=n. If k=0, we are asking how many groups of zero can be chosen from n items. The answer is 1
... there is only one way to choose no items. Similarly, if k=n then we want to choose all items ... and there is
only one way to do that as well. Also, if k>n, then there is no way to do this and the answer is zero (e.g., cannot
choose 10 students from a group of 6).

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 84 of 155

Otherwise, we can express the problem as a recursive solution by examining what happens when we select a
single item from the n items. Imagine therefore that we select one particular student that we definitely want to
participate in the project (e.g., the teacher's "pet").
We need to then express the solution to the problem, taking into account that we are going to use that one
student. In the remainder of the classroom, we therefore have n-1 students left and we still need to select k-1
students. Here is what is left →

The other situation is that we decide that we definitely DO NOT want a particular student to participate in the
project (e.g., he's been a "bad boy" lately). In this case, if we eliminate that student, we still need to select k
students, from the n-1 remaining. Here is what is left →

Now, I'm sure you will agree that if we examine one particular student ... then we will either select that student
for the project or not. These two cases represent all possible solutions to the problem. Therefore, we can express
the entire solution as:

This is a recursive definition. The problem is of the same type and gets smaller each time (since n gets smaller
and k does also in one case). This problem is interesting because there are two recursive calls to the same
problem. That is, the problem branches off twice recursively.

4.1.5 Exercises

Function: StudentCombinations
n: total number of students
k: number of students to choose

1. if (k > n) then
a. return 0

2. if (k is 0) then
a. return 1

3. if (k is n) then
a. return 1

4. return StudentCombinations(n-1,k-1) + StudentCombinations(n-1,k)

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 85 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 86 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 87 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 88 of 155

5.2. Factoring

In mathematics, factorization or factoring is the decomposition of an object (for example, a number,

a polynomial, or a matrix) into a product of other objects, or factors, which when multiplied together give the

original.

For example, the number 15 factors into primes as 3 × 5,

and the polynomial x2 − 4 factors as (x − 2)(x + 2).

In all cases, a product of simpler objects is obtained. The aim of factoring is usually to reduce something to

“basic building blocks”, such as numbers to prime numbers, or polynomials to irreducible polynomials.

Sample Problems

Problem #1 – Smallest divisor of a number

 To find smallest divisor of an integer n is very straight forward. Just take the numbers 2, 3, 4… n and divide n
with each of number in ascending order. But not efficient method, because it need more iteration (loops).

To efficiently calculate this problem we must reduce the loops by various techniques and are follows,

· All exact divisors of an integer are paired. For example an integer 24 have following divisors 2, 3, 4, 6, 8,
12. And each divisor has pair.

Here 2 and 12 are paired. In other word they are linked because

 24/2 = 12

2, 12 are smaller and bigger factors respectively.

 Same way 3 and 8 are paired, i.e. (24/3 = 8 ;) and so on.
 Smaller factor Bigger factor
 2 12
 3 8
 4 6

 Here we can see that smallest divisor 2 is paired with largest divisor 12. 2ndsmallest divisor is paired with
2nd largest divisor. And so on. If the integer is 36 we can see divisor 6 is paired with 6 itself. In general case we
have to consider only less than or equal to biggest smaller divisor, now the problem!. How can we take that
limit? Simple take √n, all smaller divisors of an integer are less √n. If n is an even number then its smallest
divisor is 2. Now we need consider only odd numbers. If we get n is the smallest divisor of n then it’s a prime,
i.e. one is smallest divisor.

Algorithm:
1. Establish the integer n
2. If n is even then 2 is smallest divisor.
3. Else

a. Compute r = √n;
b. Initialize divisor d = 3;
c. While not an exact divisor and r ≠ √n

i. Generate next divisor d in odd sequence by d = d +2;
d. If d is exact divisor and d ≠ n, then d is the smallest divisor of n

i. Else n is prime

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 89 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 90 of 155

Problem #2 – Square root of a number

The square root of a positive number b can be computed with Newton's formula:

where x above starts with a "reasonable" guess. In fact, you can always start with b or some other value, say 1.

With b and a guess value x, a new guess value is computed with the above formula. This process continues until
the new guess value and the current guess value are very close. In this case, either one can be considered as an
approximation of the square root of b.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 91 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 92 of 155

Problem #3 – GCD of two numbers

The greatest common divisor (GCD) of two integers a and b is defined to be the largest integer that
divides both a and b with no remainder. For example, the GCD of 16 and 28 is 4. One way to find the GCD of
two integers is to factor them and search for common factors, but there is a famous algorithm that is much more
efficient.The idea of the algorithm is based on the observation that, if r is the remainder when a is divided by b,
then the common divisors of a and b are precisely the same as the common divisors of b and r. Thus, we can
use the equation

to successively reduce the problem of computing a GCD to the problem of computing the GCD of smaller and
smaller pairs of integers. For example,

reduces GCD(206,40) to GCD(2,0), which is 2. It is possible to show that starting with any two positive integers
and performing repeated reductions will always eventually produce a pair where the second number is 0. Then
the GCD is the other number in the pair

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 93 of 155

`

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 94 of 155

5.3. Exercises

LAQ5.1. Computing a positive integer power of a number. Consider an : If n = 0, an is 1 (by definition) If
n > 0, an is a * an–1

LAQ5.2. Suppose Selena would like to buy a new smart phone that costs $X. She borrows the money from
her parents and with the money she earns from a part-time job, she pays them $Y per week. How
long will it take her to pay off the loan? Write a recursive function for the above calculation.

LBQ5.3. In a machine 3 sensor are fitted. The readings are single digit numbers and in display these
numbers are displayed together as a single number. The actual result we want is the sum of all
the readings. Write a recursive method to find the sum of all sensor values.

LBQ5.4. The equation used to describe the output of a discrete-time filter is in terms of a weighted
combination of the input and previous output samples. For example a first-order filter may have
the following difference equation y(m) = a y(m −1) + x(m) , where x(m) is the filter input, y(m)
is the filter output and a is the filter coefficient. Find the value of y(m) using recursion. Assume
the initial condition y(0)=1, a=10 and x(m)=1 for all m.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 95 of 155

LAQ5.5. Denis’s school is planning a hot dog lunch to raise money for sports equipment. Based on the last
hot dog lunch, the students expect to sell at least 100 hot dogs. Wieners come in packages of 12
and buns come in packages of 8. How many packages of wieners and buns should the students
buy to ensure that the numbers of wieners and buns are equal?

LBQ5.6. Your school plans to make and sell homemade ice cream. They will be having a contest for the
container design. One of the design requirements states that the length, width, and height must be
whole numbers greater than 1, and the container must be designed to hold about 1 gallon of ice
cream. One gallon of ice cream is approximately 210 cubic inches. Determine the possible
dimensions of the container.

LAQ5.7. Two bikers are riding a circular path. The first rider completes a round in 12 minutes. The
second rider completes a round in 18 minutes. If they both started at the same place and time and
go in the same direction, after how many minutes will they meet again at the starting point?

LBQ5.8. Kiara baked 30 oatmeal cookies and 48 chocolate chip cookies to package in plastic containers
for her teacher friends at school. She wants to divide the cookies into identical containers so that
each container has the same number of each kind of cookie. If she wants each container to have
the greatest number of cookies possible, how many plastic containers does she need?

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 96 of 155

6. SEARCHING AND SORTING TECHNIQUES

6.1. Searching

Linear Search (Sequential Search)

Every element in the data set is examined in the order presented until the value being searched for is

found then the technique is called as known as linear search. The linear search is also known as the sequential

search.

Assume the element 45 is to be searched from a sequence of sorted elements 12, 18, 25, 36, 45, 48, 50.

The Linear search starts from the first element 12, since the value to be searched is not 12 (value 45), the next

element 18 is compared and is also not 45, by this way all the elements before 45 are compared and when the

index is 5, the element 45 is compared with the search value and is equal, hence the element is found and the

element position is 5. The sequence of steps is as follows.

Example-1

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 97 of 155

Example-2

For example, suppose that we want to find the number 3.8 in the following list:

We start with the first element, and perform a comparison to see if its value is the value that we want. In
this case, 1.5 is not equal to 3.8, so we move onto the next element:

We perform another comparison, and see that 2.7 is also not equal to 3.8, so we move onto the next
element:

We perform another comparison and determine that we have found the correct element. Now we can end the

search and return the position of the element (index 2).

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 98 of 155

How to perform Linear Search in RAPTOR?

Step 1: Let’s try a flow chart for receiving the set of elements from the user in RAPTOR…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 99 of 155

Step 2: Now let’s look at the search in sequential order for a key element from the list containing set of

elements in RAPTOR…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 100 of 155

How to perform Linear Search in Scratch?

Binary Search

Binary search is a more efficient search algorithm which relies on the elements in the list being sorted.

We apply the same search process to progressively smaller sub-lists of the original list, starting with the whole

list and approximately halving the search area every time.

We first check the middle element in the list.

• If it is the value we want, we can stop.

• If it is higher than the value we want, we repeat the search process with the portion of the list before the

middle element.

• If it is lower than the value we want, we repeat the search process with the portion of the list after the

middle element.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 101 of 155

Example-1

For example, suppose that we want to find the value 3.8 in the following list of 7 elements:

First, we compare the element in the middle of the list to our value. 7.2 is bigger than 3.8, so we need to check
the first half of the list next.

Now the first half of the list is our new list to search. We compare the element in the middle of this list to our
value. 2.7 is smaller than 3.8, so we need to search the second half of this sublist next.

The second half of the last sub-list is just a single element, which is also the middle element. We compare this

element to our value, and it is the element that we want.

Example-2

The list to be searched: L = 1 3 4 6 8 9 11. The value to be found: X = 4.

 Compare X to 6. X is smaller. Repeat with L = 1 3 4.

 Compare X to 3. X is bigger. Repeat with L = 4.

 Compare X to 4. They are equal. We're done, we found X.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 102 of 155

Flow chart for Binary Search

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 103 of 155

Continuation…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 104 of 155

Continuation…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 105 of 155

How to perform Binary Search in Scratch?

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 106 of 155

6.2. Sorting

Sorting is any process of arranging items according to a certain sequence or in different sets, and

therefore, it has two common, yet distinct meanings:

1. Ordering: arranging items of the same kind, class or nature, in some ordered sequence,

2. Categorizing: grouping and labeling items with similar properties together (by sorts).

A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders

are numerical order and lexicographical order.

Bubble Sort

Bubble sort is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares

each pair of adjacent items and swaps them if they are in the wrong order.

How does it work?
• The bubble sort algorithm sorts the data in the given list.

• It does this by constantly comparing to values that are side-by-side on the list.

• If a value needs to be moved, its value is saved and then moved to the correct location.

• It repeats this until no changes are made to the list.

Example
Let us take the array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest number using

bubble sort. In each step, elements written in bold are being compared. Three passes will be required.

First Pass:

(5 1 4 2 8) (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap
them.

Second Pass:

(1 4 2 5 8) (1 4 2 5 8)
(1 4 2 5 8) (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
Now, the array is already sorted, but the algorithm does not know if it is completed. The algorithm needs
one whole pass without any swap to know it is sorted.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 107 of 155

Third Pass:

(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

Bubble Sort in Scratch

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 108 of 155

Bubble Sort in RAPTOR

Continuation..

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 109 of 155

Subprogram for bubble sort:

Continuation…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 110 of 155

Continuation…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 111 of 155

Insertion Sort

Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time.

Insertion sort is an elementary sorting algorithm that sorts one element at a time. The algorithm takes an

element from the list and places it in the correct location in the list.

How it does work?

• The bubble sort algorithm sorts the data in the given list.

• The list has 2 parts

• The first part is already sorted and the second part waiting to be sorted

• When the program gets to an unsorted value in a list the program moves the value into its proper
location in the first part of the list

• When the program gets the end of the list all of the values have been sorted from least to greatest

Example-1

Example-2

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 112 of 155

Insertion Sort in Scratch

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 113 of 155

Insertion Sort in RAPTOR

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 114 of 155

Continuation of Insertion Sort…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 115 of 155

Continuation of Insertion Sort…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 116 of 155

6.3. Text Processing

 Text searching and its related variations are very important in Computational Thinking. Counting the
occurrences of a particular word, searching for a keyword in the text given are the common examples which we
touch upon in this section.

String Matching and Occurrence

 Given a text, to find the no of occurrences of a substring and to search whether the searched substring
exists in the text given or not.

Example:
Input a string and check whether the substring exists and to display the count of occurrences of the searched
string

Implementation in Raptor

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 117 of 155

Continuation..

6.4. Exercises

LAQ6.1. Bob secured 34, 25, 42, 27, and 30 marks in Physics, Chemistry, Hindi, Maths, and English
respectively. Arrange his marks in ascending order.

LAQ6.2. Scores of batsmen in an IPL match are as follows: 23 runs, 13 runs, 47 runs, 10 runs and 0 run.
Sort the scores using insertion sort and bubble sort.

LBQ6.3. A bank was successful in offering Automobile loans at lower rates to increase the business in a
particular area and thereby many customers in that region availed the loan. But after a thorough
analysis after 1 year, bank realized that most of the customers were irregular in re-payment of
automobile loans. The bank maintains the complete information of the customer such as
customer loan number and number of monthly repayments. Formulate a strategy to help bank in
listing the customer loan numbers in the order of less number of repayments.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 118 of 155

LBQ6.4. The Maximum take off weights of various helicopters are given as follows,
Type MTOW[pounds]
Boeing CH-47D/F Chinook 50,000
AgustaWestland AW101 34,392
Sikorsky CH-53E 73,500
Sikorsky S-92 26,500
Mil Mi-26 123,459
opColumbia Helicopters, Inc 107 19,000
Mil Mi-12 231,485
Search in the data given above for a helicopter with MTOW as 50,000 using suitable search
techniques.

LAQ6.5. Take “God can work wonders” as input text and find the no of occurrences of alphabet “o”.

LAQ6.6. Given the input “She sells sea shells on the sea shore”, find the occurrence of the word “sea” in
the input text.

LBQ6.7. You are given two words over the lowercase English alphabet. They have to be combined into a
single new word in which all the letters (including repetitions) in the given two words occur in
increasing order (‘a’ is the least and ‘z’ is the largest) from left to right.
Example: If the two words are “ehllo” and “wrold”, the output is “dehllloorw”.
Explanation: d, e, h, l, o, r, w is the increasing order among the distinct letters. Since all the
letters must occur in the output word, the output is “dehllloorw”.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 119 of 155

7. PROBLEM ABSTRACTION AND DECOMPOSITION

7.1. Modularization

Case study -1: Binary-Decimal-Hexadecimal Conversion

Figure 1: The Main Script Part Where the Modules Have Been Used

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 120 of 155

Figure 1: Module to Initialize Strings

Figure 3: Module to Get the Decimal Value

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 121 of 155

Figure 4: Module to Convert Decimal Value to Binary Value

Figure 5: Module for Converting to Hexadecimal Value

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 122 of 155

Figure 6: Module for Converting to Binary Value

Figure 7: Module for Getting the Hexadecimal Value

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 123 of 155

Case study -2: Conversion of ASCII to Text and Text to ASCII

Figure 8: Module for Converting ASCII to Text

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 124 of 155

Figure 9: The Module for Converting Text to ASCII

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 125 of 155

Case study -3: Finding the average of a set of numbers read from the user, using two sub-charts namely “read”

and “average”.

main read average

Start

iter ← 1

iter > count

"Enter the number"
GET number[iter]

iter ← iter + 1

End

Yes

No

Loop

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 126 of 155

Case study - 4: Flowchart to read a number (number of lines) as input print the following pattern using a
function by the name of “printstar”. If “number_of_lines” is equal to 4, the pattern would be
as follows.

 *
 * *
 * * *
 * * * *

main printstar

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 127 of 155

7.2. Exercises

LAQ7.1. Using the concept of modularization in Scratch programming, implement addition and
multiplication tables.

LBQ7.2. Write a Scratch program for managing issue and return of books in a college library.

LAQ7.3. Implement matrix addition and multiplication using modularization technique in Raptor.

LBQ7.4. Draw a Raptor flowchart interpreter for the order and billing of an inventory system.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 128 of 155

CREDITS

1. http://www.howtogeek.com/school/microsoft-excel-formulas-and-functions

2. http://www.experiglot.com/2007/11/19/how-to-use-vlookup-in-excel-a-simple-tutorial-part-
i/?s=hlookup&Submit=Go%21

3. http://best-excel-tutorial.com/58-excel-functions/112-hlookup

4. https://support.office.com/en-us/article/Excel-functions-by-category-7fd9655a-4e87-400a-ae5c-
c48f16afde0c

5. https://www.ablebits.com/office-addins-blog/2012/05/03/tutorial-excel-macros/#create-macros

6. http://scratch.mit.edu

7. http://raptor.martincarlisle.com

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 129 of 155

Lab Manual Preparation Team

Dept. of CSE,
Amrita School of Engineering,

Coimbatore.

Course Mentor: Ms. C.K. Shyamala

Team Coordination: Dr. M. Senthilkumar

Tools Exploration: Mr. K. Raghesh Krishnan, Mr. V. Dayanand and Ms. V. Gayathri

Contributors: Ms.Dhanya N M, Ms.Sini Raj P, Ms. K.R.Bindu, Dr.B.Rajathilagam, Mr.S.Thangavelu,
Dr.D.Venkataraman, Dr.C.Shunmuga Velayutham, Ms.K.Nalinadevi and Dr.Vidhya Balasubramanian.

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 130 of 155

Record your observations…

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 131 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 132 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 133 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 134 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 135 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 136 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 137 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 138 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 139 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 140 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 141 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 142 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 143 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 144 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 145 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 146 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 147 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 148 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 149 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 150 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 151 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 152 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 153 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 154 of 155

Computational Thinking for Problem Solving

Department of CSE, Coimbatore Page 155 of 155

	Full page fax print
	Microsoft Word - 2. LM-CTPS_Table of Contents
	Microsoft Word - 3. LM-CTPS_Contents

