15CSE102
Computer Programming

A+B=C

Arithmetic Operators

Operator Meaning

=3

Multiply

Divide
Add
Subtract

Modulus
(return the remainder after division)

Credits: Practical C Programming

Algebraic vs C Expressions

a+b+c+d+e

5
C: m=(C(a+b+c+d+e) / 5;

Algebra: m =

Algebra: y = mx + 0

C: y =m *

1lgebra: z=pr%qg + wix—y
C:

Z = *r % q + w / X - Y;

Credits: How to Program C

Evaluating Expressions

Are these Two expressions the same?

m=a + b +c +d+ e / 5;

m= (a + b +c+d+ e) / 5;

Evaluating Expressions

Are these Two expressions the same?

m=a + b +c +d+ e / 5;

m= (a + b +c+d+ e) / 5;

Depends on the order of evaluation::

Evaluating Expressions

Parentheses

Multipl ication
Division
Remainder
Addition

Subtraction

As signmcnt

Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),
theyre evaluated left to right.

Evaluated second. If there are several, they're
evaluated left to right.

Evaluated third. If there are several, they're
evaluated left to right.

Evaluated last.

Credits: How to Program C

Evaluating Expressions

Credits: How to Program C

Evaluating Expressions

Algebra: z=pr%q + wix—y
C: Z = *r % g9 + w / X
6

Credits: How to Program C

Evaluate Expression

Give The value of y

y =2 * 5 % 5+ 3 %5 + 7;

Credits: How to Program C

Evaluate Expression

* 5 %5 + 3 %5 4+ 7; (Leftmost multiplication)

* §5 1s 10
I

(Leftmost multiplication)

3 *5 + 7, (Multiplication before addition)
3 * 5 1s 15

; |

15 + 7; (Leftmost addition)

15 is 65

(Last addition)

(Last operation—place 72 in y)
Credits: How to Program C

Evaluate Expression

It you think order ot evaluation is
hard To remember

y =2 * 5 % 5+ 3 %5 + 7;

Evaluate Expression

It you think order ot evaluation is
hard To remember

y =2 * 5 % 5+ 3 %5 + 7;

parantheses comes very handyri

y =(2 * 5 * 5) + (3 * 5) + 7;

Be the Compiler

#include <stdio.h>

int main{) What do you Think
is The outpul of

float c; |
-~ 5/9. this code?
printf (Y“c = 3£"”, cC);

return 0O;

J

Credits: www.tech-recipes.co

m

Be the Compiler

#include <stdio.h>

1nt main ()

The tollowing will
{ be the output

float c;
C = 0,000000
c =5/9;

printf (“c = %f”, <c);
return 0O;

J

Credits: www.tech-recipes.com

Float vs Integer

Result type

Integer
1.0 + 2.0 3. Floating Point
19 / 10 | Integer
19.0 / 10.0 1.6 Floating Point

Credits: Practical C Programming

Float vs Integer Divide

#include <stdio.h>

1nt main ()

The tollowing will
{ be the output

tloat c; 0,555556
C = °

c = 5.0/9;

printf (“c = %$£”, c);

return 0O;

J

Credits: www.tech-recipes.co

m

Remember

1, It an arithmetic operator has integer
operands Then infeger operafion is
Pertormed (resulfing in infeger fyper)

2. 1T an arithmetic operator has one
tloating point operafor and one integer
operator, The infeger will be convertea
to tloat betore the operafion is done

Credits: www.tech-recipes.com

Relational Operators

Equality operators

+

Relational operators

Credits: How to Program C

Precedence & Associativity

left to right
left to right
left to right

left to right

left to right

right to left

Credits: How to Program C

Logical Operators

Logical Operators

Operator

Description

Example

&&

AND

X=6
y=3
X<10 && y>1 Return True

X=6
y=3

X==3 || y==3 Return False

X=6
y=3

(X==y) Return True

Credits: studytipsandtricks.blogspot.in

Credits: www.programiz.com

Bitwise AND &

12 00001100 (In Bilinary)
25 00011001 (In Binary)

Bit Operation of 12 and 25
00001100
& 00011001

00001000 = 8 (In decimal)

Credits: www.programiz.com

Bitwise OR |

12 000011600 (In Binary)
29 00011001 (In Binary)

Bitwlse OR Operation of 12 and 25
00001100
| 00011001

00011101 = 29 (In decimal)

Credits: www.programiz.com

Bitwise XOR A

12 = 00001100 (In Binary)
25 = 00011001 (In Binary)

Bitwlse XOR Operation of 12 and 25
00001100
| 00011001

00010101 = 21 (In decimal)

Credits: www.programiz.com

Bitwise Complement ~

35 = 00100011 (In Binary)

Bitwlise complement Operation of 35
~ 00100011

11011100 = 220 (In decimal)

Credits: www.programiz.com

Bitwise Complement ~

35 = 00100011 (In Binary)

Bitwlise complement Operation of 35
~ (00100011

11011100 = 220 (In decimal)

But the bitwise complement of
35 1S —3b how?

Bitwise Complement ~

35 = 00100011 (In Binary)

Bitwlise complement Operation of 35
~ (00100011

11011100 = 220 (In decimal)

Negafive numbers are sfored as Two’s
complement ot positive counterpart,
220 is Two’s complement of =361

Assignment Operators

Credits: How to Program C

Unary Operators

Increment a by 1, then use the new value ot
a in the expression in which a resides.

Use the current value of a in the expression
in which a resides, then increment a by 1.

Decrement b by 1, then use the new value
of b in the expression in which b resides.

Use the current value of b in the expression
in which b resides, then decrement b by 1.

Credits: How to Program C

Side-Effect Problems

result (value++ * 5) + (value++ * 3):

Evaluate 1st expression

++ D,[]Ef'affgﬁ

*

=)

Evaluate 2nd expression

Credits: Practical C Programming

Side-Effect Problems

(value++ * 5) + (value++ * 3):;

++ operation

-

Evaluate 1st expression

Evaluate 2nd expression
4

Credits: Practical C Programming

Conditional Operator

TRUE

|]
Boolean expression

Credits: codeforwin.in &

Conditional Operator

Credits: codeforwin.in & infoletcodes.blogspot.in

Big Picture

right to left
right to left
left to right
lett to right
left to right
lett to right
right to left
right to left

postfix
unary
multiplicative
additive
relational
equality
conditional

assignment

CSE102
Computer Programming

(Next Topic)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

