
Department of CSE1

3.7 Command Line Arguments

Objectives

• To understand how arguments can be passed to main function.

• To give input to the program when it is executed.

• To make program execution dynamic by changing input for each run.

2 Department of CSE

Agenda
• Main Function

• Command-Line arguments

 Types of arguments

• Example Programs using command-Line arguments

• Exercises

3 Department of CSE

Main Function
• All C language programs must have a main() function.

• It's the core of every program.

• It contains instructions that tell the computer to carry out whatever task your
program is designed to do.

• The main function can also have arguments

4 Department of CSE

Command-Line arguments

• Arguments to the main function is called Command-Line arguments.

• A command-line argument is the information that follows the name of

the program on the command line of the operating system.

• Command-line arguments are used to pass information into a program

when the program is executed.

• Eg: When we write program to append two files ,the file names are

supplied when program starts executing rather than specifying it as

constants.

5 Department of CSE

Introduction-Continued…
• C defines two built-in parameters to main()

 The parameters receive the command line arguments

 Their names are argc and argv

Note: The names of the parameters are arbitrary. However, argc

and argv have been used by convention for several years.

6 Department of CSE

Types of Parameters
• int main(int argc , char *argv[])

argc:

Holds the number of arguments on the command line

 Since the name of the program always corresponds to the first

argument, it is always at least 1

argc is an integer

 The value for this argument is not entered by the user.

The system determined it from arguments that user specifies when

program is executed.

7 Department of CSE

Types of parameters-continued…
int main(int argc, char *argv[])

argv[]

 Argv is a pointer to an array of character pointers.

 Each character pointer in the argv array corresponds a string

containing a command-line argument

Eg: argv[0] points the name of the program, argv[1] points to

the first argument, argv[2] points to the second argument, ...

 Each command-line argument is a string

 If you want to pass numerical information to your program, your program

should convert the corresponding argument into its numerical equivalent.

 Each command-line argument must be separated by spaces or tabs

8 Department of CSE

Syntax

int main(int argc, char* argv[])

{

}

When the program is executed:

In command prompt: $./a.out string1 string2…. stringN

9 Department of CSE

Rules to be followed

• All command-line arguments are passed to the program as strings

 program should convert them into their proper internal

format.

• As a programmer, the names of the parameters in main can be specified, but the

types and format are predefined for the language.

10 Department of CSE

Illustrations

/*Program to print command-Line arguments*/

#include<stdio.h>

int main(int argc,char * argv[])

{

int i;

printf(“Number of arguments is:%d\n",argc);

printf(“Name of the program is :%s\n",argv[0]);

for(i=1;i<argc;i++)

{

printf(“User entered string value no %d is %s\n",i,argv[i]);

}

}

Output:

[d_bharathi@ssh ~]$ cc command1.c

[d_bharathi@ssh ~]$./a.out welcome

No of arguments is :2

Name of the program is:./a.out

User entered string value no 1 is welcome

/*Program to add two numbers*/

#include<stdio.h>

void main(int argc, char * argv[]) {

int i, sum = 0;

if (argc != 3) {

printf("You have forgot to type numbers.");

exit(1);

}

printf("The sum is : ");

for (i = 1; i < argc; i++)

sum = sum + atoi(argv[i]);

printf("%d", sum);}

Output:

[d_bharathi@ssh ~]$ cc addcommand.c

[d_bharathi@ssh ~]$./a.out 5 7

The sum is : 12

11 Department of CSE

Illustration with files-Program to copy one

file content to another file
/* File Copy using Command line arguments */

#include<stdio.h>

int main(int argc,char *argv[])

{

FILE *fs,*ft;

int ch;

if(argc!=3)

{

printf("Invalide numbers of arguments.");

return 1;

}

fs=fopen(argv[1],"r");

if(fs==NULL)

{

printf("Can't find the source file.");

return 1;

}

ft=fopen(argv[2],"w");

if(ft==NULL)

{

printf("Can't open target file.");

fclose(fs);

return 1;

}

while(1)

{

ch=fgetc(fs);

if (feof(fs)) break;

fputc(ch,ft);

}

fclose(fs);

fclose(ft);

return 0;

}

12 Department of CSE

Illustration with files-Program to copy one file content to another
file-continued…

Output:

[d_bharathi@ssh ~]$ vi con.c

[d_bharathi@ssh ~]$ vi sample.txt

[d_bharathi@ssh ~]$ vi result.txt

[d_bharathi@ssh ~]$ cc con.c

[d_bharathi@ssh ~]$./a.out sample.txt result.txt

[d_bharathi@ssh ~]$ vi result.txt

13 Department of CSE

Finding the output
1. What will be the output of the program (myprog.c) given below if it is executed

from the command line?

cmd> myprog one two three

/* myprog.c */

#include<stdio.h>

#include<stdlib.h>

int main(int argc, char *argv[])

{ printf("%s\n", argv[1]);

return 0; }

Output:

one
14 Department of CSE

Finding the output-continued…
2. What will be the output of the program (sample.c) given below if it is executed

from the command line (turbo c under DOS)?

cmd> sample Good Morning

/* sample.c */

#include<stdio.h>

int main(int argc, char *argv[])

{ printf("%d %s", argc, argv[1]); return 0; }

Output: 3 Good

15 Department of CSE

Debugging code
1. What will be the output of the program (sample.c) given below if it is executed from the

command line ?

cmd> sample 1 2 3

/* sample.c */

#include<stdio.h>

int main(int argc, char *argv[])

{ int j; j = argv[1] + argv[2] + argv[3];

printf("%d", j); return 0; }

Output:Error

Explanation: Here argv[1], argv[2] and argv[3] are string type. We have to convert the string
to integer type before perform arithmetic operation.

Example: j = atoi(argv[1]) + atoi(argv[2]) + atoi(argv[3]);

16 Department of CSE

Simple word problems

1. Every time we supply new set of values to the program at command prompt, we

need to recompile the program.

Answer: No only input will be changed.

2. The first argument to be supplied at command-line must always be count of total

arguments

Answer: No, The system determined it from arguments that user specifies when

program is executed.

17 Department of CSE

Summary

• The Command-Line arguments provides input to the program

during run time.

• Command-Line arguments are optional.

18 Department of CSE

