3.6 Binary Input / Qutput

g

Objectives

e To understand operations on text and binary files
 To understand the differences between text and binary files

* To write programs that read, write, and/or append text and binary

files

K Department of CSE

4 N

Text File vs Binary File

e Text files are divided into lines. Each byte in a text file

represents a character, therefore readable by humans

* In binary files, each byte may not be a character.

e

An Example

character.

character “A” as a single character of size one byte.

 Text File stores “768” as three numeric characters and “A” as single

* Binary File stores “768” as a single short int character of 2 bytes and

sz

store data as they are stored in primary memory.

shortint| 768 char A
7 6 8 A
00110111 00110110 {00111000 |01000001 00000011 00000000 |01000001
- 768 it— A i t—— 768 ——~t— A =
Text File Binary File

* Note: Text files store data as a sequence of characters; binary files

4 N

State of File

* Files can be opened in Read, Write or Error State
e To read from a file - open in Read state
 To write into a file - open in Write state

e Error state - Occurs when a read operation is attempted on a file

opened in Write state or vise versa.

Note: A file opened in “read” state must already exist. Otherwise the

open fails.

e Files can be opened in various states based on the file mode

statements

e

File Modes

read
state state

write

read

o write
positioning
functions

wrile read

read made (r)

read update mode (r+)

wite moda (w)

positioning

write

read lm'it
stale state

read

error
state

writa
poasitioning
functio

wrle update mode (w+)

append mode (a)

append update mode (a+)

e
File Modes Continued.

Mode
Open State read | write | write | read | write | write
Read Allowed yes no no yes | vyes | yes
Write Allowed no yes | yes | yes | yes | vyes
Append Allowed no no yes no no yes
File Must Exist yes no no yes no no
Contents of Existing File Lost | no yes no no yes no
* Position of the EOF marker for each mode
A A t‘
t]

Marker Marker Marker

k.

Read Mode (r, r+)

Write Mode (w, w+)

Append Mode (a, a+)

/

File operations

* Openafile: fopen ()

Close afile: fclose ()

Read a binary file: fgetc (), getc (), fgets(),
puts (), fscanf (), fread()

Write a binary file: fputc (), putc(), fputs(),
puts (), fprintf(), fwrite()

qumﬂmnmg:fseek(), ftell (), fgetpos(),
fsetpos ()

fopen()

FILE *fopen (char *name, char *mode);

vold fclose (FILE* stream)

. fopen returns a pointer to a F' I LE.

e mode can be

“¢’> - read
(44 » .

W - write
“a” - append

“b” can be appended to the mode string to work with binary files. For example,

“rb” means reading binary file.

Text Files — fprintf()

int fprintf (FILE *fp, char *format, ...);
Similar to printf :

On success, the total number of characters written is returned.

It a writing error occurs, a negative number is returned.

g

Example — create and write to a file

#include <stdio.h>
int main ()
{
FILE *fp;
char name[10];
double balance;
int account;
if ((fp = fopen(“clients.dat”, “w”)) == NULL) {
printf (“File could not be opened\n”);
}
else {
printf ("Enter one account, name, and balance.\n”);
scanft (“3d%$s%1lf”, &account, name, &balance);
fprintf (fp, "%d %s %.2f\n", account, name, balance);
fclose (fp) ;
}

return 0O;

g
Text Files — fscanf()

int fscanf (FILE *fp, char *format, ...);
Similar to scanf.

*On success, return the number of items successtully filled. This count can

match the expected number of items or be less (even zero) due to a matching
failure, a reading error, or the reach of the end-of-file. And, it end-of-file
happens before any data could be successtully read, EOF is returned.

int feof (FILE *fp);

sreturn 1/0 end-of-file is reached

http://www.cplusplus.com/EOF

g

Text Files — read from a file

#include <stdio.h>
int main ()
{
FILE *fp;
char name[10];
double balance;
int account;
if ((fp = fopen(“clients.dat”, “r”)) == NULL) {
printf (“File could not be opened\n”);
}
else {
fscanf (fp, “%d%s%1lf”, &account, name, &balance);
printf ("%d %$s %$.2f\n", account, name, balance);
fclose (fp) ;
}

return 0;

4 N

Text Files — character 1/0

int fputc(int ¢, FILE *fp);
int putc(int ¢, FILE *fp);
Write a character c to a file. putc() is often implemented as a MACRO (hence

faster). On success, the character written is returned. If a writing error

occurs, EOF is returned

int fgetc (FILE *fp);
int getc(FILE *fp);
Read a character c to a file. getc() is often implemented as a MACRO (hence

faster). On success, the character read is returned. It a read error

occurs, EOF is returned.

- /

http://www.cplusplus.com/EOF
http://www.cplusplus.com/EOF

g

Text Files — character 1/0

#include <stdio.h>

int main ()

{
FILE *source fp, *dest fp;
int ch;

if ((source fp = fopen("source.txt", "r")) == NULL)
printf ("cannot open source file\n");

1f ((dest fp = fopen("dest.txt", "w")) == NULL)
printf ("cannot open dest file\n");

while ((ch = getc(source fp)) != EOF)
putc(ch, dest fp);

fclose (source fp);
fclose (dest fp);
return O;

g

Text Files — character 1/0

int ugetc(int ¢, FILE *fp);

Push back a character read from a file pointer.

int feof (FILE *fp);
return 1/0 end-of-file is reached

g

Text Files — character 1/0

#include <stdio.h>
int main ()

{

FILE * fp;

int c;

fp = fopen ("source.txt","r");
if (fp == NULL) {

printf ("cannot open the file\n");
return 0;
}
while (!'feof (fp)) {
c = getc(fp);
if (¢ == "#")
ungetc('Q', £fp)
else
putc (c, stdout); // stdout is the screen

}

return 0;

g

Text Files — standard input & output

« FILE *stdin // screen input as a file

« FILE *stdout // screen output as a file

4 N

Text Files — stdin, stdout

— — “— — —— -
| CA\Users\hchu\Desktop'\courses\intro_prog_125\samplesihello\bin\Debug'\hello.e:

#include <stdio.h>

int main () x 123
{ Process returned 42 (Bx2AD execution time : 9.460 s
j_nt C; iPress any key to continue.
while ((c =
fgetc(stdin)) != "*")
{

fputc (c, stdout);

a I
Text Files— Line 1/0

int fputs(const char *s, FILE *fp);

Write a line of characters to a file. On success, a non-negative value is

returned. On error, the function returns EOF.

char* fgets(char *s, int n, File *fp);

Read characters from a file until it reaches the tirst new-line or (n-1)
characters, in which it places the NULL character (‘\0") at the end of the
string.

On success, the function returns s. If the end-of-file is encountered before any

characters could be read, the pointer returned is a NULL pointer (and the

contents of s remain unchanged).

- /

http://www.cplusplus.com/EOF

g
Text Files— Line 1/0

#include <stdio.h>

int main ()

{
FILE *source fp, *dest fp;
char s[100];

if ((source fp = fopen("source.txt", "r")) == NULL)
printf ("cannot open source file\n");
1f ((dest fp = fopen("dest.txt", "w")) == NULL)

printf ("cannot open dest file\n");

while (fgets(s, 100, source fp) != NULL)
fputs (s, dest fp);

fclose (source fp);
fclose (dest fp);
return 0;

e

Opening Binary Files

e Syntax:
FILE* fopen (const char* filename, const char® mode);

 The six binary file modes are

g

Examples

e The following are examples of open statements for binary files

 // Write into a binary file
FILE *{p WriteBin;
fpWriteBin=fopen("c:\\myFile.bin", “wb”);

* // Read from a binary file
fpReadBin = fopen (“myFile.bin”, “rb”);

 // Write with update
fpWriteUpdateBin = fopen (“myFile.bin”, “w+Db’);

* // Append to a binary file
fpApndBin = fopen (“myFile.bin”, “ab”);

KB

e

Closing a Binary File

e This is the same as closing a text file

int fclose (fpReadBin);

e

Standard Library Functions for Files

* Chas eight categories of standard file library functions.

* The first 4 are already discussed — opursoioee

Character
Input/Output

Farmatted
Input/Output

Input/Output
Categories of
‘ 1’0 Functions I
Block

InputCutput

File
Positioning

[

System
File Operations

File

Status
2

i

File operations

* Openafile: fopen ()
Close afile: fclose ()

Read a binary file: fgetc (), getc (), fgets(),
puts (), fscanf (), fread()

Write a binary file: fputc (), putc(), fputs(),
puts (), fprintf(), fwrite()

qumﬂmnmg:fseek(), ftell (), fgetpos|(),
fsetpos ()

g
1

. Block I/ O Functions

Used to read and write data into binary files as discussed previously.

With the exception of character data, we cannot “see” data in binary

files. It opened in an editor it looks like hieroglyphics.

This is because there are no format conversions .

. fread() and fwrite() are the block read and write functions.

e

1. Block I/ O Functions Continued.
* File Read : fread()

* reads a specified number of bytes from a binary file and places

them into memory at the specified location.
. Syntax:

pInArea is a pointer to the input area in memory

elementSize & count are multiplied to determine

the amount of data to be transferred.

the last parameter (sp)is the associated stream

e
1. Block /0O Functions — tread().

e An example of a file that reads data into an array of integers

oy
. A
L]
iy L
‘-. L] - &
i 5
- 5
- iy
LY - 5
%
..,

3"4~12Dbytes pejore -, el after .
read Ta, - read .
=
inArea .
fread (inArea, sizeof (int), 3, spData);

* fread() transfers the next 3 integers from the file(spData) to the

array(inArea)

o If only 2 integers are left to read tread() will return 2

\\?

(1 . Block 1/ 0O Functions — tread().

* Program: read a file of integers

1| // Read a file of integers, three integers at a time.
21 A
3 -
4 | // Local Declarations
5 FILE* spIntFile;
6 int itemsRead;
7 int intAry([3];
8
91 // Statements
10 spIntFile = fopen("int file.dat", "rb");
11
12 while ((itemsRead = fread(intAry,
13 sizeof(int), 3, spIntFile)) != 0)
14 {
15 // process array
16 -
17 } // while
18 as
\\i 19 | ¥ // block

4 N
1. Block /0O Functions — tread().

* fread() returns the number of items read
* In the previous figure it will range from 0-3
* A more common use: - Reading Structures (records)
* Advantage: Structures contain a variety of data (string, int, float,etc.)
* Block I/0O functions can transfer data one structure(record) at a
time

* No need to format data

e

1. Block /0O Functions — tread().

. Reading a Structure

Before Read

(I CE T L- LT DI | T
r ? before
oneStudent read
(D Ly (I CE) e
oneStudent - - . ?gfc;
After Read

e

1. Block I/ O Functions continued.

* Program: Read Student File

0O 1 O bW N

e e e =
b0 = W N r O W

/* Reads one student's data from a file

Pre spStuFile is opened for reading

Post stu data structure filled

ioResults returned
* /
int readStudent (STU* oneStudent, FILE* spStuFile)
{
// Local Declarations
int ioResults;

// Statements
ioResults = fread(oneStudent,
sizeof (STU), 1, spStuFile);
return ioResults;
} // readStudent

e

1. Block I/O Functions — twrite().

_

Writes a specified number of items to a binary file

Syntax

Fwrite copies elementSize x count
bytes from the address specified by
pOutArea to the file

The parameters for file write correspond exactly with the parameters

tfor fread().
[t returns the number of items written.
Eg: if it writes 3 integers, it returns 3

If the number of items written is fewer than count, then error

/

e
1. Block I/ O Functions — twrite().

* File Write Operation

- - A
- 1
< /
4*3 = 12 bytes

’ / before after
V4
¢ 7 write write

outArea ‘

fwrite (outArea, sizeof (int), 3, spOut);

g
1. Block I/ O Functions — twrite().

. Writing a Structure

Before Write

file

marker
aStudent -"

file

marker
aStudent -"

After Write

e
1. Block I/ O Functions — twrite().

* Program: Writing Structured Data

1| /* Writes one student's record to a binary file.
2 Pre aStudent has been filled
3 spOut is open for writing
4 Post aStudent written to spOut
5| */
6 | void writeStudent (STU* aStudent, FILE* spOut)
-
8 | {
9 | // Local Declarations
10 int ioResult;
11
12 | // Statements
13 ioResult = fwrite(aStudent,
14 sizeof(STU), 1, spOut);
15 if (ioResult != 1)
16 {
17 printf("\a Error writing student file \a\n");
18 exit (100);
19 Yy // if
20 return;
21 | ¥ // writeStudent

g

2. File Positioning

 These have 2 uses:

* For randomly processing data in disk files — position the file to read the
desired data.

* Change a file state (from read to write, etc.)
* There are 3 tunctions

* Rewind — rewind()

* Tell location — frell()

* File seek — fseek()

g

2. File Positioning — rewind()

* Sets the file position indicator to beginning of file

Before Rewind

file
marker

file
marker

After Rewind

4 N

2. File Positioning — rewind()

. Syntax:

void rewind(FILE* stream);

e A common use: Change a work file from write state to read state

* NOTE: recollect that to read and write a file with one open, we must

open it in update mode(w+ or w+b).

* Though the same can be achieved by closing and reopening a file,

rewinding is a faster operation.

g

2. File Positioning — ftell()

* Reports current position of file marker in file relative to the
beginning of the file

* Measures position in bytes starting from zero
* Returns a long integer
* Syntax: long int ftell (FILE* stream);

Beginning
of File

i

Current
Number of Bytes |5cation (16)

g

2. File Positioning — ftell()

* To find number of structures relative to first structure, it must be

calculated.

* Example
numChar = fte]](sp);
numStruct = numChar / sizeof STRUCTURE_TYPE);

* Here each structure is 4 bytes. If ftell() returns 16, it implies that

there are 4 structures before this one.
* If ftell() encounters an error it returns “-1”
* There are 2 conditions for error
* Using ftell() with a device that cannot store data

* When position is larger than 10ng int

g

3. File Positioning — fseek()

* Positions the file location indicator to the specified byte position in

the file
. Syntax:

int fseek(FILE* stream, long offset, int wherefrom);

* The first parameter is a pointer to the open file(either rea/write)

 Second parameter is a signed integer that specifies the number of

bytes : absolutely or relatively.

g

3. File Positioning — fseek()

e C provides 3 named constants that specify the start position

(wherefrom) of the seek operation
e #define SEEK_SET 0
e #define SEEK_CUR 1
 #define SEEK_END 2

 When wherefrom is SEEK_SET or 0, the offset is measured
absolutely from the beginning of the file

* Example: to set file indicator to byte 100 on a file the syntax is

fseek(sp, 99L, SEEK_SET);

-

g

3. File Positioning — fseek()

-

When wherefrom is set to SEEK_CUR or 1, the displacement is

calculated from the current file position.

If the displacement is negative, the file position moves to the

beginning of the file and if displacement is positive, it moves towards

the end of the file.

[t is an error to move beyond the beginning of a file

The file is extended if the marker moves beyond the end of the file

but the contents of the extended bytes are unknown.

Example: To position the file marker to the next record in a

structured file

fseek(sp, sizeof(STRUCTURE_TYPE), SEEK_CUR);

g

3. File Positioning — fseek()

* If wherefrom is SEEK_END or 2, the file locator indicator is
positioned relative to the end of the file.

e This is used to write a record to the end of the file as shown below

fseek(stuFile,0L,SEEK_END);

e This returns O if the positioning is successful and returns a non zero
P g

value if unsuccessful.

g

3. File Positioning — fseek()

D | [] [][4

1

fseek (sp, 4 * sizeof (STRUCTURE_TYPE), SEEK SET);

D | [D [][

I

fseek (sp, - 4 * sizeof (STRUCTURE_TYPE), SEEK_END) ;

1 1 [] [|

1

fseek (sp, 2 * sizeof (STRUCTURE_TYPE), SEEK _CUR);

e

48

-

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Example: Program to Append 2 Binary Files

// Statements

printf("This program appends two files.\n");
printf ("Please enter file ID of the primary file: ");
scanf ("%$12s", fileID);
if (!(spl = fopen (fileID, "ab")))
printf("\aCan’t open %s\n", fileID), exit (100);

if (!(dataCount = (ftell (spl))))
printf("\a%s has no data\n", fileID), exit (101);
dataCount /= sizeof(int);

printf ("Please enter file ID of the second file: ");
scanf ("%12s", fileID);
if (!(sp2 = fopen (fileID, "rb")))

printf("\aCan't open %s\n", fileID), exit (110);

while (fread (&data, sizeof(int), 1, sp2) == 1)
{
fwrite (&data, sizeof(int), 1, spl);
dataCount++;

}y // while

Department of CSE

g

38
39
40
41
42
43
44
45
46
47
48

if (! feof(sp2))

printf("\aRead Error.

fclose (spl);
fclose (sp2);

printf ("Append complete:

dataCount);
return 0;
// main

Example: Program to Append 2 Binary Files Cont.

No output.\n"), exit (120);

%1d records in file\n",

49

N

Department of CSE

™

