
Department of CSE
1

3.6 Binary Input/Output

Department of CSE

Objectives
• To understand operations on text and binary files

• To understand the differences between text and binary files

• To write programs that read, write, and/or append text and binary

files

2

Text File vs Binary File

• Text files are divided into lines. Each byte in a text file

represents a character, therefore readable by humans

• In binary files, each byte may not be a character.

3

NOTE :

Formatted input/output(printf,scanf) , character input/output(getchar,

putchar), and string input/output(fgets, fputs) functions can be used only with

text files.

An Example
• Text File stores “768” as three numeric characters and “A” as single

character.

• Binary File stores “768” as a single short int character of 2 bytes and

character “A” as a single character of size one byte.

• Note: Text files store data as a sequence of characters; binary files

store data as they are stored in primary memory.

4

State of File
• Files can be opened in Read, Write or Error State

• To read from a file - open in Read state

• To write into a file - open in Write state

• Error state - Occurs when a read operation is attempted on a file

opened in Write state or vise versa.

Note: A file opened in “read” state must already exist. Otherwise the

open fails.

• Files can be opened in various states based on the file mode

statements

5

File Modes

6

File Modes Continued.

• Position of the EOF marker for each mode

7

File operations

• Open a file: fopen()

• Close a file: fclose()

• Read a binary file: fgetc(), getc(), fgets(),

puts(), fscanf(), fread()

• Write a binary file: fputc(), putc(), fputs(),

puts(), fprintf(), fwrite()

• File positioning: fseek(), ftell(), fgetpos(),

fsetpos()

fopen()

FILE *fopen(char *name, char *mode);

void fclose(FILE* stream)

• fopen returns a pointer to a FILE.

• mode can be

• “r” - read

• “w” - write

• “a” - append

• “b” can be appended to the mode string to work with binary files. For example,

“rb” means reading binary file.

Text Files – fprintf()

int fprintf(FILE *fp, char *format, ...);

Similar to printf.

On success, the total number of characters written is returned.

If a writing error occurs, a negative number is returned.

Example – create and write to a file

#include <stdio.h>

int main()

{

FILE *fp;

char name[10];

double balance;

int account;

if ((fp = fopen(“clients.dat”, “w”)) == NULL) {

printf(“File could not be opened\n”);

}

else {

printf(“Enter one account, name, and balance.\n”);

scanf(“%d%s%lf”, &account, name, &balance);

fprintf(fp, "%d %s %.2f\n", account, name, balance);

fclose(fp);

}

return 0;

}

Text Files – fscanf()
int fscanf(FILE *fp, char *format, ...);

•Similar to scanf.

•On success, return the number of items successfully filled. This count can

match the expected number of items or be less (even zero) due to a matching

failure, a reading error, or the reach of the end-of-file. And, if end-of-file

happens before any data could be successfully read, EOF is returned.

int feof(FILE *fp);

•return 1/0 end-of-file is reached

http://www.cplusplus.com/EOF

Text Files – read from a file

#include <stdio.h>

int main()

{

FILE *fp;

char name[10];

double balance;

int account;

if ((fp = fopen(“clients.dat”, “r”)) == NULL) {

printf(“File could not be opened\n”);

}

else {

fscanf(fp, “%d%s%lf”, &account, name, &balance);

printf("%d %s %.2f\n", account, name, balance);

fclose(fp);

}

return 0;

}

Text Files – character I/O
int fputc(int c, FILE *fp);

int putc(int c, FILE *fp);

Write a character c to a file. putc() is often implemented as a MACRO (hence

faster). On success, the character written is returned. If a writing error

occurs, EOF is returned

int fgetc(FILE *fp);

int getc(FILE *fp);

Read a character c to a file. getc() is often implemented as a MACRO (hence

faster). On success, the character read is returned. If a read error

occurs, EOF is returned.

http://www.cplusplus.com/EOF
http://www.cplusplus.com/EOF

Text Files – character I/O

#include <stdio.h>

int main()

{

FILE *source_fp, *dest_fp;

int ch;

if ((source_fp = fopen("source.txt", "r")) == NULL)

printf("cannot open source file\n");

if ((dest_fp = fopen("dest.txt", "w")) == NULL)

printf("cannot open dest file\n");

while ((ch = getc(source_fp)) != EOF)

putc(ch, dest_fp);

fclose(source_fp);

fclose(dest_fp);

return 0;

}

Text Files – character I/O
int ugetc(int c, FILE *fp);

Push back a character read from a file pointer.

int feof(FILE *fp);

return 1/0 end-of-file is reached

Text Files – character I/O

#include <stdio.h>

int main ()

{

FILE * fp;

int c;

fp = fopen ("source.txt","r");

if (fp == NULL) {

printf("cannot open the file\n");

return 0;

}

while (!feof (fp)) {

c = getc(fp);

if (c == '#')

ungetc('@', fp);

else

putc(c, stdout); // stdout is the screen

}

return 0;

}

Text Files – standard input & output
• FILE *stdin // screen input as a file

• FILE *stdout // screen output as a file

Text Files – stdin, stdout

#include <stdio.h>

int main ()

{

int c;

while ((c =

fgetc(stdin)) != '*')

{

fputc(c, stdout);

}

}

Text Files – Line I/O
int fputs(const char *s, FILE *fp);

Write a line of characters to a file. On success, a non-negative value is

returned. On error, the function returns EOF.

char* fgets(char *s, int n, File *fp);

Read characters from a file until it reaches the first new-line or (n-1)

characters, in which it places the NULL character („\0‟) at the end of the

string.

On success, the function returns s. If the end-of-file is encountered before any

characters could be read, the pointer returned is a NULL pointer (and the

contents of s remain unchanged).

http://www.cplusplus.com/EOF

Text Files – Line I/O

#include <stdio.h>

int main()

{

FILE *source_fp, *dest_fp;

char s[100];

if ((source_fp = fopen("source.txt", "r")) == NULL)

printf("cannot open source file\n");

if ((dest_fp = fopen("dest.txt", "w")) == NULL)

printf("cannot open dest file\n");

while (fgets(s, 100, source_fp) != NULL)

fputs(s, dest_fp);

fclose(source_fp);

fclose(dest_fp);

return 0;

}

Opening Binary Files
• Syntax:

FILE* fopen (const char* filename, const char* mode);

• The six binary file modes are

22

Examples
• The following are examples of open statements for binary files

• // Write into a binary file
FILE *fpWriteBin;
fpWriteBin=fopen("c:\\myFile.bin", “wb”);

• // Read from a binary file
fpReadBin = fopen (“myFile.bin”, “rb”);

• // Write with update
fpWriteUpdateBin = fopen (“myFile.bin”, “w+b”);

• // Append to a binary file
fpApndBin = fopen (“myFile.bin”, “ab”);

23

Closing a Binary File
• This is the same as closing a text file

int fclose (fpReadBin);

24

• C has eight categories of standard file library functions.

• The first 4 are already discussed

Standard Library Functions for Files

25

File operations

• Open a file: fopen()

• Close a file: fclose()

• Read a binary file: fgetc(), getc(), fgets(),

puts(), fscanf(), fread()

• Write a binary file: fputc(), putc(), fputs(),

puts(), fprintf(), fwrite()

• File positioning: fseek(), ftell(), fgetpos(),

fsetpos()

1. Block I/O Functions
• Used to read and write data into binary files as discussed previously.

• With the exception of character data, we cannot “see” data in binary

files. If opened in an editor it looks like hieroglyphics.

• This is because there are no format conversions .

• fread() and fwrite() are the block read and write functions.

27

• File Read : fread()

• reads a specified number of bytes from a binary file and places

them into memory at the specified location.

• Syntax:

int fread(void* pInArea,

int elementSize,

int count,

FILE* sp);

1. Block I/O Functions Continued.

28

pInArea is a pointer to the input area in memory

elementSize & count are multiplied to determine

the amount of data to be transferred.

the last parameter (sp)is the associated stream

1. Block I/O Functions – fread().
• An example of a file that reads data into an array of integers

• fread() transfers the next 3 integers from the file(spData) to the

array(inArea)

• If only 2 integers are left to read fread() will return 2
29

1. Block I/O Functions – fread().
• Program: read a file of integers

30

1. Block I/O Functions – fread().
• fread() returns the number of items read

• In the previous figure it will range from 0-3

• A more common use: - Reading Structures (records)

• Advantage: Structures contain a variety of data (string, int, float,etc.)

• Block I/O functions can transfer data one structure(record) at a

time

• No need to format data

31

1. Block I/O Functions – fread().
• Reading a Structure

1. Block I/O Functions continued.
• Program: Read Student File

1. Block I/O Functions – fwrite().
• Writes a specified number of items to a binary file

• Syntax

int fwrite (void* pOutArea,
int elementSize,
int count,
FILE* sp);

• The parameters for file write correspond exactly with the parameters
for fread().

• It returns the number of items written.

• Eg: if it writes 3 integers, it returns 3

• If the number of items written is fewer than count, then error

Fwrite copies elementSize x count

bytes from the address specified by

pOutArea to the file

1. Block I/O Functions – fwrite().
• File Write Operation

1. Block I/O Functions – fwrite().
• Writing a Structure

1. Block I/O Functions – fwrite().
• Program: Writing Structured Data

2. File Positioning
• These have 2 uses:

• For randomly processing data in disk files – position the file to read the

desired data.

• Change a file state (from read to write, etc.)

• There are 3 functions

• Rewind – rewind()

• Tell location – ftell()

• File seek – fseek()

2. File Positioning – rewind()
• Sets the file position indicator to beginning of file

2. File Positioning – rewind()
• Syntax:

void rewind(FILE* stream);

• A common use: change a work file from write state to read state

• NOTE: recollect that to read and write a file with one open, we must

open it in update mode(w+ or w+b).

• Though the same can be achieved by closing and reopening a file,

rewinding is a faster operation.

2. File Positioning – ftell()
• Reports current position of file marker in file relative to the

beginning of the file

• Measures position in bytes starting from zero

• Returns a long integer

• Syntax: long int ftell (FILE* stream);

2. File Positioning – ftell()
• To find number of structures relative to first structure, it must be

calculated.

• Example

numChar = ftell(sp);

numStruct = numChar / sizeof(STRUCTURE_TYPE);

• Here each structure is 4 bytes. If ftell() returns 16, it implies that

there are 4 structures before this one.

• If ftell() encounters an error it returns “-1”.

• There are 2 conditions for error

• Using ftell() with a device that cannot store data

• When position is larger than long int

3. File Positioning – fseek()
• Positions the file location indicator to the specified byte position in

the file

• Syntax:

int fseek(FILE* stream, long offset, int wherefrom);

• The first parameter is a pointer to the open file(either rea/write)

• Second parameter is a signed integer that specifies the number of

bytes : absolutely or relatively.

3. File Positioning – fseek()
• C provides 3 named constants that specify the start position

(wherefrom) of the seek operation

• #define SEEK_SET 0

• #define SEEK_CUR 1

• #define SEEK_END 2

• When wherefrom is SEEK_SET or 0, the offset is measured

absolutely from the beginning of the file

• Example: to set file indicator to byte 100 on a file the syntax is

fseek(sp, 99L, SEEK_SET);

3. File Positioning – fseek()
• When wherefrom is set to SEEK_CUR or 1, the displacement is

calculated from the current file position.

• If the displacement is negative, the file position moves to the

beginning of the file and if displacement is positive, it moves towards

the end of the file.

• It is an error to move beyond the beginning of a file

• The file is extended if the marker moves beyond the end of the file

but the contents of the extended bytes are unknown.

• Example: To position the file marker to the next record in a

structured file

fseek(sp, sizeof(STRUCTURE_TYPE), SEEK_CUR);

3. File Positioning – fseek()
• If wherefrom is SEEK_END or 2, the file locator indicator is

positioned relative to the end of the file.

• This is used to write a record to the end of the file as shown below

fseek(stuFile,0L,SEEK_END);

• This returns 0 if the positioning is successful and returns a non zero

value if unsuccessful.

3. File Positioning – fseek()

Department of CSE

Example: Program to Append 2 Binary Files

48

Department of CSE

Example: Program to Append 2 Binary Files Cont.

49

