
Department of CSE1

3.3 Structures

Objectives

• To give an introduction to Structures

• To clearly distinguish between Structures from Arrays

• To explain the scenarios which require Structures

• To illustrate the syntax and usage of Structures with examples

• To „simplify‟ Complex Structures

2 Department of CSE

Agenda

• Recap on Arrays

• Introduction

• Arrays vs. Structures

• Structures in detail

• Complex Structures

3 Department of CSE

Recap on Arrays

• Recap : What is an Array ?

• A contiguously stored set of memory locations to be used to store

elements having the same data type.

• Example:

Image Credits - http://hubpages.com/technology/Array-in-C-programming--Programmers-view

4 Department of CSE

Introduction

• What are Structures?

• A structure is a collection of related elements, possibly of different

types, having a single name [1].

• A struct (keyword), is a complex data type declaration that

defines a physically grouped list of variables to be placed under

one name in a block of memory, allowing the different variables to

be accessed via a single pointer, or the struct declared name which

returns the same address.

• Structures help to organize complicated data, particularly in large

programs, because they permit a group of related variables to be

treated as a unit instead of as separate entities.

5 Department of CSE

Syntax
• An example of a structure is the payroll record:

• The format of a structure definition is as follows:

OR

• An employee is described by a set of attributes such as name, designation, employee

id, salary, etc.

• A structure designed for this purpose would look like:

6 Department of CSE

struct employee{
int empid;
char name[10];
char designation[10];
float salary;

}emp; /* emp is a variable of structure type empdata */

struct TAG
{

field 1;
field 2;

};

struct TAG
{

field 1;
field 2;

}variable;

Declaration types

• Two main ways for declaring a structure:

1. Tagged Structure Format

Ex : a) b)

• Here, „employee‟ is the tag which is the identifier for the

structure.

• In example 1.a), no variable is defined to be used with the

structure which would make it just a template (no memory

declared) which can be used later as a data type.

• In 1.b), a structure variable „emp‟ is declared as a variable of

type „struct employee‟ and can be used readily.
7 Department of CSE

struct employee{
int empno;
char name[10];
};

struct employee{
int empno;
char name[10];
}emp;

Declaration types

• In the case of Tagged Structure Format example 1.a), a

separate variable declaration would be necessary, the format

followed would be as shown below:

8 Department of CSE

struct employee{
int empno;
char name[10];
};

struct employee emp;

Declaration types

2. Using typedef

• The keyword „typedef‟ precedes the „struct‟ declaration

Format Example

• An identifier (emp) in the example is required at the end of the

block which acts as the type definition name.

• Example:

9 Department of CSE

typedef struct{
field list;

}TYPE;

typedef struct{
int empno;
char name[10];
}emp;

typedef struct{
int empno;
char name[10];
}emp;
emp matt; //local declaration

Accessing a structure member

• To access an element which is a structure‟s member, the direct selection

(“.”) operator is used.

• Syntax:

• Example:

• Pointers as structure element:

• Example:

10 Department of CSE

<structure variable name>.<element name>

struct employee{
int empno;
char name[10];
}emp;
emp.empno=2;
printf(“%d”,emp.empno);

struct employee{
int *empno;
char name[10];
}emp;
int emp_number;
emp.empno = & emp_number;
printf(“%d”,*emp.empno);

Pointers to Structures

• To access structure elements through pointers, the pointer is to be

declared as the structure type.

• For the structure employee, the pointer is declared as:

• The address of the structure variable „matt‟ will be stored in the

pointer „ptr‟.

• To access the member of the „matt‟ using „ptr‟, the usage will be:

or using the indirect selection(->)
11 Department of CSE

struct employee{
int empno;
char name[10];
}emp;
struct employee matt;
struct employee* ptr;
ptr=&matt;

(*ptr).empno *ptr->empno

Complex Structures

• Structures can be built to includes variables, arrays, pointers and even

structures of different data types.

• Two examples of a nested structure (structure within a structure).

Declared Inside Declared Outside
12 Department of CSE

struct salary{
int basic_pay;
int DA;
int HRA;

};
struct employee{

struct salary sal;
char name[10];

}emp;
emp matt;
printf(“%d”,emp.sal.DA);

struct employee{
struct salary{
int basic_pay;
int DA;
int HRA;

}sal;
char name[10];

};
struct employee emp;
emp.sal.DA=100;
printf("%d",emp.sal.DA);

Complex Structures

• Structures with arrays:

• The character array “name” in the code snippet below is an

example:

• The way to access the individual members of the array inside the

structure is illustrated in the last line of the above code snippet.

13 Department of CSE

typedef struct{
int empno;
char name[10];
int devices[3];
}emp;
emp matt;
matt.devices[1]=1024;

Complex Structures

• Arrays of structures:

• We can declare an array of a particular type of structure as

follows:

• The way to access one particular element in the structure array is by

using the index, as shown in the last line of the above code snippet.

14 Department of CSE

struct employee{
int empno;
char name[10];
}emp;
emp new[5];
new[1].name[1]=‘m’;

Try it Yourself

• Predict the output:

1.

Answer: Some value, like „0‟ since e2‟s empno is printed, which is not
initialised.

15 Department of CSE

#include<stdio.h>
main()
{

typedef struct{
int empno;
char name[10];
}emp;
emp e1,e2;
e1.empno=5004;
printf("%d\n",e2.empno);

}

Try it Yourself
• Predict the output:

2.

Answer:
Compilation Error.
“emp” is not a
variable.

16 Department of CSE

#include<stdio.h>
main()
{
struct salary{

int basic_pay;
int DA;
int HRA;

};
typedef struct{

struct salary sal;
char name[10];

}emp;
emp matt;
matt.salary.da=350;
printf("%d",emp.sal.DA);
}

Try it Yourself
• Predict the output:

3.

Answer: “jeff ”

17 Department of CSE

#include<stdio.h>
#include<string.h>
main(){

typedef struct{
int empno;
char name[10];
}emp;
emp new[5];
emp* ptr;
ptr=&new[1];
strcpy(new[1].name,"matt");
strcpy(new[2].name,"jeff");
ptr++;
printf("%s\n",ptr->name);

}

Try it Yourself
• Code debugging

1.

Answer: change the printf statement to printf(“%d”,matt.sal.DA);

18 Department of CSE

struct salary{
int basic_pay;
int DA;
int HRA;

};
struct employee{

struct salary sal;
char name[10];

}emp;
emp matt;
matt.salary.da=350;
printf(“%d”,emp.sal.DA);

Try it Yourself
• Code debugging

2.

Answer: change the scanf statement scanf(“%d”,p->empno), since it is already an

address.
19 Department of CSE

#include<stdio.h>
main()
{

struct employee{
int empno;
char name[10];
};
struct employee emp;
struct employee* p;
p=&emp;
printf(“Enter the employee number:”);
scanf(“%d”,&p->empno);

}

Try it Yourself
• Code debugging

3.

Answer: The structure declaration is wrong, having the identifier (emp)
declared along with a variable (lucy).

20 Department of CSE

#include<stdio.h>
main()
{

typedef struct{
int empno;
char name[10];
}emp lucy;
emp matt;
emp jeff;
p=&matt;
printf(“Enter the employee number:”);
scanf(“%d”,p->empno);

}

Try it Yourself
1. Write a program to find the sum of two complex numbers. The numbers are be stored as

structure variables 'A' and 'B', both of type “struct number”. The elements of the structure
“number” are two integers namely 'real' and 'img' which stores the 'real' and 'imaginary' parts of
the number respectively and they are to be read from the user.

2. Write a program to find the distance between two points. The points are to be stored as
structure variables 'A' and 'B', both of type “struct point”. The elements of the structure “point”
are two integers namely 'x' and 'y' which stores the 'x' and 'y' coordinates of the point in X-Y
plane respectively; and they are to be read from the user.

3. There are a set of students in a class whose marks in 5 subjects are to be stored to find their total
and average. You have to write a program to automate this process. Use a structure to store the
name, his/her marks in 5 subjects, total and average. Write a menu­driven program to
accomplish this. It should present the users with the following options:

1. Add a new student

2. Search for a student's total using his/her name.

3. Print the rank list of the class.

4. Exit

21 Department of CSE

Common Programming Mistakes

• Semicolon at the end of declaration.

• The direct selection operator has higher precedence than the

indirection operator.

• The typename in declaration using typedef comes after the closing

brace, before the semicolon.

• Do not use the same structure name with a tag inside a structure.

22 Department of CSE

Summary

• Discussed on the following:

• Introduction to Structures

• Difference between Structures and Arrays

• Syntax and usage formats of structures

• Examples

23 Department of CSE

References
1. Computer Science : A Structured Programming Approach Using C, Behrouz A

Forouzan and Richard F Gilberg.

24 Department of CSE

