
Department of CSE1

3.1 Strings

Objectives

• To understand design concepts for fixed-length and variable-length

strings

• To understand the design implementation for C-language delimited

strings

• To write programs that read, write, and manipulate strings.

2 Department of CSE

Agenda
• Introduction

• Strings in C
• Storing Strings

• The String Delimiter

• String Literals
• Declaring Strings

• Initializing Strings

• Strings and the Assignment Operator

• String Input/Output Functions
• Formatted String Input

• String conversion code

• Scan set conversion code
• Formatted String Output

• String-only Input

• String-only Output

3 Department of CSE

Recap -- data type ‗char‘

• The domain of the data type char is the set of symbols that can be
displayed on the screen or typed on the keyboard.

• These symbols : the letters, digits, punctuation marks, spacebar,
Return key, and so forth—are the building blocks for all text data.

• char is a scalar type and are stored as ASCII code,

• set of operations available for characters is the same as that for
integers

• Adding an integer to a character

• Subtracting an integer from a character

• Subtracting one character from another

• Comparing two characters against each other

4 Department of CSE

Introduction
• A string is a sequence of characters treated as a group

• What are the primitive operations that you might want to

perform on strings?

To begin with, you need to

• Specify a string constant in a program

• Read in a string form the user by using GetLine

• Display a string on the screen by using print

• Determine whether two strings are exactly equal by using

StringEqual

5 Department of CSE

Introduction(contd..)

• What else might you want to do?

When working with strings, you might, for example, want to
perform any of the following operations:

• Find out how long a string is

• Select the first character—or, more generally, the ith character—
within a string.

• Combine two strings to form a longer string

• Convert a single character into a one-character string

• Extract some piece of a string to form a shorter one

• Compare two strings to see which comes first in alphabetical order

• Determine whether a string contains a particular character or set of
characters

6 Department of CSE

Introduction(contd..)

General - String taxonomy
• Strings in Pascal is different from strings in C

Length-controlled Strings: stores the

number of characters in the string
Delimited Strings: adds a

delimiter at the end of string

Pascal Strings

7 Department of CSE

Strings in C

• String is not an explicit type, instead strings are maintained as arrays

of characters

• Representing strings in C

• stored in arrays of characters

• array can be of any length

• end of string is indicated by a delimiter, the zero character ‗\0‘

8 Department of CSE

C uses variable-length, delimited strings.

Strings in C - -(contd..)

• Strings is a arrays of characters delimited by null character (‗\0‘).

―Hello‖

9 Department of CSE

Strings in C (contd..)

Storing strings:
• A character, in single quotes:
char s1= `h`; //Takes only one byte of storage.
• On the other hand, the character string:
char s2[2]=―H"; //Takes two bytes of storage.

• An empty string
char s3[]= “”; //Takes only one byte of
Storage storage.

S2

S3

S1

10 Department of CSE

Strings in C (contd..)

String Delimiter:

• Strings as we know are data type.

• It uses physical structure as arrays

• So, it needs a logical end within the physical structure to

indicate variable length

• Therefore, null character(‗\0‘) is used as delimiter

Difference between string and character array is shown in the figure

11 Department of CSE

Strings in C (contd..)

String Delimiter:

• Important note:

• on declaring array take care to leave one byte for delimiter.

• String ignores anything that follows null character.

12 Department of CSE

Strings in C – (contd..)

String literals : A string constant or literal is enclosed in

double quotes.

13 Department of CSE

Strings in C (contd..)

String Literals:

• String literal has an address in memory

• String literal is an array of characters, it is a pointer constant to the

first element of the string.

• Hence, the entire string is referenced using this as shown below..

14 Department of CSE

Strings in C(contd..)

Declaring Strings:

• Case (a) has the ceiling of 8-characters plus a delimiter

• However, case (b) allows length to be defined before usage.

Memory for strings must be allocated before the string can

be used.
15 Department of CSE

Strings in C(contd..)

Initializing Strings:

• char str[9]= ―Good Day‖; or char str[9]= {‗G‘,‘o‘,‘o‘,‘d‘,‘ ‗,

‗D‘,‘a‘,‘y‘,‘\0‘}

• char month[]= ―January‖;

• char *pStr =―Good Day‖;

16 Department of CSE

Illustration
#include <stdio.h>

int main()

{

char *pstr;

int length;

printf("Enter the length of the string : ");

scanf (―%d‖, &length);

pstr = (char *)malloc((length+1)*sizeof(char)); //remember to allocate (length + 1) space

printf("Enter a string : ");

printf("You entered: %s", pstr);

return(0);

}

On execution:

Enter the length of the string: 17

Enter a string : tutorialspoint.com

You entered: tutorialspoint.com

17 Department of CSE

Strings in C(contd..)

Assignment Operator:

• The name of the string is a pointer constant.

• Pointer constant can be used only as rvalue

• hence it cannot be used as left operand of assignment.

char str1[6]=―Hello‖;

char str2[6];

• Copying strings is done either character-by-character using loops

or using library function

str1=str2; gives compilation error

18 Department of CSE

String Input/Output Functions
• C provides two basic ways to read and write strings.

• First, we can read and write strings with the formatted

input/output functions, scanf/fscanf and printf/fprintf.

• Second, we can use a special set of string-only functions,

get string (gets/fgets) and put string (puts/fputs).

19 Department of CSE

String Input/Output Functions (contd..)
Formatted String Input:

• Strings can be read using scanf from console and using fscanf
from files.

• Two Conversion codes are possible for reading strings
• String conversion code --- ―s‖

• Scan set conversion code ---- […]

• Three optional conversion modifiers are possible preceding
the conversion code:

% [*] [maximum-field-width] [size] Letter

20 Department of CSE

String Input/Output Functions (contd…)

Conversion

Modifier

Description

Flag (*) Assignment Supression. This modifier causes the corresponding input to be

matched and converted, but not assigned (no matching argument is needed).

Eg. int anInt; scanf("%*s %i", &anInt);

Matching Input---- Age: 29

Result ---- anInt==29

Maximum-field-width This is the maximum number of character to read from the input. Any

remaining input is left unread. (Always use this with "%s" and "%[...]"

in all production quality code! (No exceptions!) You should use one less than

the size of the array used to hold the result.) example discussed in following

slides.

Size Read normal 8-bit ASCII characters if not specified.

Otherwise, with option l (note it is letter ell) reads wide characters like UCS

and Unicode

Formatted String Input:

21 Department of CSE

String Input/Output Functions(contd…)

Formatted String Input – String Conversion Code:

• Use %s field specification in scanf to read string
• ignores leading white space

• reads characters until next white space encountered

• C stores null (\0) char after last non-white space char

• Example:

char Name[11];

scanf(―%s‖, Name); /* Note: need not use & before Name */

• Problem: no limit on number of characters read (need one for
delimiter), if too many characters for array, problems may occur

The string conversion code(s) skips whitespace.

22 Department of CSE

String Input/Output Functions (contd…)

Formatted String Input – String Conversion Code:

• Can use the width value in the field specification to limit the
number of characters read:
char month[10];
scanf(―%9s‖,month);

• Remember, you need one space for the \0
• width should be one less than size of array

• Strings shorter than the field specification are read normally, but
C always stops after reading 9 characters
• The remaining part string that is not read upto newline can be/ has to

be flushed as shown in the program as follows:

23 Department of CSE

String Input/Output Functions (contd…)

Formatted String Input – String Conversion Code:

24 Department of CSE

String Input/Output Functions (contd…)

Formatted String Input – Scan Set Conversion Code:
• Edit set input %[ListofChars]

• ListofChars specifies set of characters (called scan set)
• Characters read as long as character falls in scan set
• Stops when first non scan set character encountered
• Note, does not ignored leading white space
• Any character may be specified except]
• Putting ^ at the start to negate the set (any character BUT list is allowed)

• Examples:

• scanf(―%10[-+0123456789]‖,Number);

• scanf(―%81[^\n]‖,Line); /* read until newline char */

• scanf(―%15[^~!@#$%^&*()_+]‖, str) ; /*reads characters other than specified*/

• scanf(―%15 [] [0123456789]‖,str); /* reads square bracket and num */

25 Department of CSE

Formatted String Input – Scan Set Conversion Code:
• Note:

The edit set does not skip whitespace.

Always use a width in the field specification

when reading strings.

String Input/Output Functions (contd…)

26 Department of CSE

Formatted String Output:

• Strings can be write using printf to console and using fprintf

to files.

• Conversion codes are possible for writing strings is ―s‖

• Four optional conversion modifiers are possible preceding

the conversion code:

% [Justification Flag] [minimum-field-width] [precision] [size] s

The maximum number of characters to be printed

is specified by the precision in the format

string of the field specification.

String Input/Output Functions (contd…)

27 Department of CSE

String Input/Output Functions (contd…)

Conversion

Modifier

Description

Justification Flag left-justify within the field.

Eg. char Name[10] = ―Rich‖;

printf(―|%-10s|‖,Name); /* Outputs: |Rich | */

Minimum-field-width After converting any value to a string, the field width represents the

minimum number of characters in the resulting string. If the converted value

has fewer characters, then the resulting string is padded with spaces (or zeros)

on the left (or right) by default (or if the appropriate flag is used.)

Eg. printf("|%5s|", "ABC"); /* outputs |··ABC| */

Precision specifies the maximum number of bytes written. If the string is too long it

will be truncated.

Eg. printf("|%-5.3s|", "ABCD"); /* outputs |ABC··| */

Size Read normal 8-bit ASCII characters if not specified.

Otherwise, with option l (note it is letter ell) reads wide characters like UCS

and Unicode

28 Department of CSE

String Input/Output Functions (contd…)

String-only Input :

• Read without reformatting any data is provided by the function gets

• gets converts line to string

• char *gets(char *str)

• reads the next line (up to the next newline) from keyboard and
stores it in the array of chars pointed to by str

• returns str if string read or NULL if problem/end-of-file
• not limited in how many chars read (may read too many for array)
• newline included in string read

29 Department of CSE

String Input/Output Functions (contd…)
Illustration:

#include <stdio.h>

int main()

{

char str[50];

printf("Enter a string : ");

gets(str);

printf("You entered: %s", str);

return(0);

}

On execution:

Enter a string : tutorialspoint.com

You entered: tutorialspoint.com

30 Department of CSE

String Input/Output Functions (contd…)

String-only Input:
• write without reformatting any data is provided by the function puts

• puts converts String to line

• int puts(char *str)
• prints the string pointed to by str to the screen
• prints until delimiter reached (string better have a \0)
• returns EOF if the puts fails
• outputs newline if \n encountered (for strings read with gets or

fgets)

31 Department of CSE

Try it Yourself
• Predict the output

#include<stdio.h>

void main() {

char *str="CQUESTIONBANK";

clrscr();

printf(str+9);

getch(); }

What will output when you compile and run the above code?

Answer: BANK

32 Department of CSE

Try it Yourself

• Predict the output

What will be output when you will execute following c code?

#include<stdio.h>

void main(){

char arr[7]="Network";

printf("%s",arr);

}

Answer: garbage value (Reason: as the string ―Network‖ is of length 7
so the string is not null terminated)

33 Department of CSE

Try it Yourself
• Predict the output

What will be output when you will execute following c code?

#include<stdio.h>

#define var 3

void main(){

char *cricket[var+~0]={"clarke","kallis"};

char *ptr=cricket[1+~0];

printf("%c",*++ptr);

}

Answer: l

Reason:

• In the expression of size of an array can have micro constant. var +~0 = 3 + ~0 = 3 + (-1) = 2

• Therefore circket[2] = {pointer to c, pinter to k}

• ++ptr --- ptr+1 is equal to the location following c in clarke, hence th answer is l(letter ell).

34 Department of CSE

Summary

• The string storage schemes in old styled programming language vs

new languages were discussed.

• Declaring and initializing strings was discussed.

• Raw vs formatted read and write of strings was dealt .

35 Department of CSE

