
Department of CSE1

2.3 DYNAMIC MEMORY

ALLOCATION

Objectives

• Learn how to allocate and free memory, and to control dynamic

arrays of any type of data in general and structures in particular.

• Practice and train with dynamic memory in the world of work

oriented applications.

• To know about the pointer arithmetic

• How to create and use array of pointers.

2 Department of CSE

Agenda

• Dynamic memory allocation

• Malloc

• Calloc

• Realloc

• free

• Pointer Arithmetic

• Array of pointers

3 Department of CSE

Introduction

• While doing programming, if you are aware about the size of an

array, then it is easy and you can define it as an array.

• For example to store a name of any person, it can go max 100

characters so you can define something as follows:

• char name[100]

• But now let us consider a situation where you have no idea about

the length of the text you need to store, for example you want to

store a detailed description about a topic. Here we need to define

a pointer to character without defining how much memory is

required and later based on requirement we can allocate memory .

4 Department of CSE

Memory Allocation Function

5 Department of CSE

Difference between Static and Dynamic

memory allocation

S.no
Static memory

allocation

Dynamic memory

allocation

1

In static memory allocation, memory

is allocated while writing the C

program. Actually, user requested

memory will be allocated at compile

time.

In dynamic memory allocation, memory

is allocated while executing the program.

That means at run time.

2

Memory size can’t be modified while

execution.

Memory size can be modified while

execution.

Example: array Example: Linked list

6 Department of CSE

Introduction

• Creating and maintaining dynamic structures requires dynamic

memory allocation— the ability for a program to obtain more

memory space at execution time to hold new values, and to release space no

longer needed.

7 Department of CSE

Memory Allocation Functions

8 Department of CSE

Syntax

• The following are the function used for dynamic memory allocation

• void *malloc(int num);

• This function allocates an array of num bytes and leave them
uninitialized.

• void *calloc(int num, int size);

• This function allocates an array of num elements each of which
size in bytes will be size.

• void *realloc(void *address, int newsize);

• This function re-allocates memory extending it upto newsize.

• void free(void *address);

• This function releases a block of memory block specified by
address.

9 Department of CSE

Block Memory Allocation (malloc)

• Malloc function allocates a block of memory that contains the
number of bytes specified in its parameter.

• It returns a void pointer to the first byte of the allocated memory

• The allocated memory is not initialized . We should therefore assume
that it will contain unknown values and initialize it as required by our
program.

• The function declaration is as follows

• void* malloc (size_t size)
• If it is not successful malloc return NULL pointer.

• An attempt to allocate memory from heap when memory is
insufficient is known as overflow.

10 Department of CSE

malloc

11 Department of CSE

• It is up to the program to check the memory overflow

• If it doesn't the program produces invalid results or aborts with

an invalid address the first time the pointer is used.

malloc

• Malloc function has one more potential error.

• If we call malloc function with zero size , the results are

unpredictable.

• It may return a NULL pointer

• Never call malloc with a zero size!!!!!

12 Department of CSE

Contiguous Memory Allocation (calloc)

• Calloc is primarily used to allocate memory for arrays.

• It differs from malloc only in that it sets memory to null characters.

• void *calloc (size_t element-count, size_t element-size)

13 Department of CSE

Reallocation of memory(realloc)

• The realloc function can be highly inefficient and should be used

advisedly.

• When given a pointer to the previously allocated block of memory,

realloc changes the size of the block by deleting or extending the

memory at the end of the block.

• If memory cannot be extended because of other allocations, realloc

allocates a completely new block and copies the existing memory

allocation to new allocation, and deletes the old allocation.

• void *realloc (void* ptr, size_t newSize)

14 Department of CSE

realloc

15 Department of CSE

Releasing Memory (free)

• When memory locations allocated by malloc, calloc or realloc are no

longer needed, they should be freed using the predefined function

free.

• void free(void* ptr)

• Below shows the example where first one releases a

single element allocated with malloc

• Second example shows 200 elements were allocated

with calloc . When free the pointer 200 elements are

returned to the heap.

16 Department of CSE

free

17 Department of CSE

Difference between malloc and calloc

S.no malloc() calloc()

1
It allocates only single block of requested

memory
It allocates multiple blocks of requested memory

2

int *ptr;ptr = malloc(20 * sizeof(int));For

the above, 20*4 bytes of memory only

allocated in one block.

int *ptr;Ptr = calloc(20, 20 * sizeof(int));For

the above, 20 blocks of memory will be created

and each contains 20*4 bytes of memory.

Total = 80 bytes Total = 1600 bytes

3
malloc () doesn’t initializes the allocated

memory. It contains garbage values
calloc () initializes the allocated memory to zero

4

type cast must be done since this function

returns void pointer int *ptr;ptr =

(int*)malloc(sizeof(int)*20);

Same as malloc () function int *ptr;ptr =

(int*)calloc(20, 20 * sizeof(int));

18 Department of CSE

Resizing and Releasing Memory

• When your program comes out, operating system automatically

release all the memory allocated by your program but as a good

practice when you are not in need of memory anymore then you

should release that memory by calling the function free().

• Alternatively, you can increase or decrease the size of an allocated

memory block by calling the function realloc().

19 Department of CSE

Example-1
#include <stdio.h>

#include <stdlib.h>

int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc

if(ptr==NULL)

{

printf("Error! memory not allocated.");

exit(0);

}

printf("Enter elements of array: ");

for(i=0;i<n;++i)

{

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}

20 Department of CSE

Enter number of elements: 3

Enter elements of array: 2 7 1

Sum=10

Dynamic-ex1.c

Example - 2

21 Department of CSE

#include <stdio.h>

#include <stdlib.h>

int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);

ptr=(int*)calloc(n,sizeof(int));

if(ptr==NULL)

{

printf("Error! memory not allocated.");

exit(0);

}

printf("Enter elements of array: ");

for(i=0;i<n;++i)

{

scanf("%d",ptr+i);

sum+=*(ptr+i);

}

printf("Sum=%d",sum);

free(ptr);

return 0;

}

Enter number of elements: 3

Enter elements of array: 2 1 3

Sum=6

Dynamic-ex2.c

Example - 3

22 Department of CSE

#include <stdio.h>

#include <stdlib.h>

int main(){

int *ptr,i,n1,n2;

printf("Enter size of array: ");

scanf("%d",&n1);

ptr=(int*)malloc(n1*sizeof(int));

printf("Address of previously allocated memory: ");

for(i=0;i<n1;++i)

printf("%u\t",ptr+i);

printf("\nEnter new size of array: ");

scanf("%d",&n2);

ptr=realloc(ptr,n2);

for(i=0;i<n2;++i)

printf("%u\t",ptr+i);

return 0;

}

Enter size of array: 3

Address of previously allocated memory: 7474944

7474948 7474952

Enter new size of array: 5

7474944 7474948 7474952 7474956 7474960

Dynamic-ex3.c

Example - 4

#include <stdio.h>

#include <string.h>

int main()

{

char name[100];

char *description;

strcpy(name, "Zara Ali");

/* allocate memory dynamically */

description = malloc(200 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{

strcpy(description, "Zara ali a DPS student in class 10th");

}

printf("Name = %s\n", name);

printf("Description: %s\n", description);

}

23 Department of CSE

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

Dynamic-ex4.c

Example - 5
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

char name[100];

char *description;

strcpy(name, "Zara Ali");

/* allocate memory dynamically */

description = malloc(30 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{

strcpy(description, "Zara ali a DPS student.");

}
24 Department of CSE

Example – 5 Cont---
/* suppose you want to store bigger description */

description = realloc(description, 100 * sizeof(char));

if(description == NULL)

{

fprintf(stderr, "Error - unable to allocate required memory\n");

}

else

{

strcat(description, "She is in class 10th");

}

printf("Name = %s\n", name);

printf("Description: %s\n", description);

/* release memory using free() function */

free(description);

}

25 Department of CSE

Name = Zara Ali

Description: Zara ali a DPS student.She is in class 10th

Dynamic-ex5.c

Memory Leaks

• A memory leak occurs when allocated memory is never used again
but is not freed.

• I can happen when

• The memory’s address is lost

• The free function is never invoked though it should be

• The problem with memory leak is that the memory cannot be
reclaimed and use later. The amount of memory available t the heap
manager will be decreased.

• If the memory is repeatedly allocated and then lost, then the
program may terminate when more memory is needed but malloc
cannot allocate it because it ran out of memory.

26 Department of CSE

Example

char *chunk;

while(10

{

chunk=(char*) malloc (1000000);

printf(“allocating\n”);

}

• The variable chunk is assigned memory from heap. However this
memory is not freed before another block of memory is assigned to
it.

• Eventfully the application will run out of memory and terminate
abnormally.

27 Department of CSE

Department of CSE28

POINTER ARITHMETIC

Pointer Arithmetic

• This section introduces the concept of pointer arithmetic, and this

will form one of the very important building blocks in understanding

the functionality of pointers.

29 Department of CSE

Pointer Expressions and Pointer Arithmetic

• Arithmetic operations can be performed on pointers

• Increment/decrement pointer (++ or --)

• Add an integer to a pointer(+ or += , - or -=)

• Pointers may be subtracted from each other

• All these operations meaningless unless performed on an array

• NOTE: Division and Multiplication are not allowed.

Pointer Arithmetic
• int a,b,*p,*q

• p=-q /* illegal use of pointers*/

• p<<=1 /* illegal use of pointers*/

• p=p-b /*valid*/

• p=p-q /* nonportable pointer conversion*/

• p=(int*) p-q /*valid*/

• p=p-q-a /*valid*/

• p=p+a /*valid*/

• p=p+q /* invalid pointer addition*/

• p=p*q /* illegal use of pointers*/

• p=p/q /* illegal use of pointers*/

• p=p/a /* illegal use of pointers*/

31 Department of CSE

Pointer Increment – Example - 1

#include<stdio.h>

void main()

{

int n;

int *pn;

pn=&n;

int *pn1;

pn1=pn+1;

printf("%d %d\n", pn,pn1);

double d;

double *pd;

pd=&d;

double *pd1;

pd1=pd+1;

printf("%d %d\n", pd,pd1);

}

32 Department of CSE

2686788 2686792

2686768 2686776

Arithmetic-ex1.c

Incrementing Pointer :
• Incrementing Pointer is generally used in array because we have contiguous

memory in array and we know the contents of next memory location.

• Incrementing Pointer Variable Depends Upon data type of the Pointer variable

33 Department of CSE

Example – 2

#include<stdio.h>

int main()

{

int *ptr=(int *)1000;

printf(“Old Value of ptr : %u",ptr);

ptr=ptr+1;

printf("New Value of ptr : %u",ptr);

return 0;

}

34 Department of CSE

Old Value of ptr : 1000

New Value of ptr : 1004

Arithmetic-ex2.c

Difference between two integer Pointers –

Example - 3

#include<stdio.h>

int main(){

float *ptr1=(float *)1000;

float *ptr2=(float *)2000;

printf("\nDifference : %d\n",ptr2-ptr1);

return 0;

}

35 Department of CSE

Difference : 250

Arithmetic-ex3.c

Explanation

• Ptr1 and Ptr2 are two pointers which holds memory address of Float

Variable.

• Ptr2-Ptr1 will gives us number of floating point numbers that can be

stored.

• ptr2 - ptr1 = (2000 - 1000) / sizeof(float)

• = 1000 / 4

36 Department of CSE

Pointer Division – Example - 4

#include<stdio.h>

int main()

{

int *ptr1,*ptr2;

ptr1 = (int *)1000;

ptr2 = ptr1/4;

return(0);

}

37 Department of CSE

Illegal Use of operator : INVALID

Arithmetic-ex4.c

Pointer Expressions and Pointer Arithmetic-Arrays

• 5 element int array on machine with 4 byte ints

• vPtr points to first element v[0]

• at location 3000 (vPtr = 3000)

• vPtr += 2; sets vPtr to 3008

• vPtr points to v[2] (incremented by 2), but the machine has

4 byte ints, so it points to address 3008

Array v and a pointer variable vPtr that points to v.

The pointer vPtr after pointer arithmetic

Pointer Expressions and Pointer Arithmetic

• Subtracting pointers

• Returns number of elements from one to the other. If

vPtr2 = v[2];

vPtr = v[0];

• vPtr2 - vPtr would produce 2

• Pointer comparison (<, == , >)

• See which pointer points to the higher numbered array element

• Also, see if a pointer points to 0

The Relationship Between Pointers and Arrays

• Arrays and pointers closely related

• Array name like a constant pointer

• Pointers can do array subscripting operations

• Define an array b[5] and a pointer bPtr

• To set them equal to one another use:

bPtr = b;

• The array name (b) is actually the address of first element of the

array b[5]

bPtr = &b[0]

• Explicitly assigns bPtr to address of first element of b

The Relationship Between Pointers and Arrays

• Element b[3]

• Can be accessed by *(bPtr + 3)

• Where n is the offset. Called pointer/offset notation

• Can be accessed by bptr[3]

• Called pointer/subscript notation

• bPtr[3] same as b[3]

• Can be accessed by performing pointer arithmetic on the array

itself
*(b + 3)

Example - 5
 1

 2 Using subscripting and pointer notations with arrays */

 3

 4 #include <stdio.h>

 5

 6 int main(void)

 7 {

 8 int b[] = { 10, 20, 30, 40 }; /* initialize array b */

 9 int *bPtr = b; /* set bPtr to point to array b */

10 int i; /* counter */

11 int offset; /* counter */

12

13 /* output array b using array subscript notation */

14 printf("Array b printed with:\nArray subscript notation\n");

15

16 /* loop through array b */

17 for (i = 0; i < 4; i++) {

18 printf("b[%d] = %d\n", i, b[i]);

19 } /* end for */

20

21 /* output array b using array name and pointer/offset notation */

22 printf("\nPointer/offset notation where\n"

23 "the pointer is the array name\n");

24

25 /* loop through array b */

26 for (offset = 0; offset < 4; offset++) {

27 printf("*(b + %d) = %d\n", offset, *(b + offset));

28 } /* end for */

29

Array subscript notation

Pointer/offset notation

30 /* output array b using bPtr and array subscript notation */

31 printf("\nPointer subscript notation\n");

32

33 /* loop through array b */

34 for (i = 0; i < 4; i++) {

35 printf("bPtr[%d] = %d\n", i, bPtr[i]);

36 } /* end for */

37

38 /* output array b using bPtr and pointer/offset notation */

39 printf("\nPointer/offset notation\n");

40

41 /* loop through array b */

42 for (offset = 0; offset < 4; offset++) {

43 printf("*(bPtr + %d) = %d\n", offset, *(bPtr + offset));

44 } /* end for */

45

46 return 0; /* indicates successful termination */

47

48 } /* end main */

Array b printed with:

Array subscript notation

b[0] = 10

b[1] = 20

b[2] = 30

b[3] = 40
 (continued on next slide…)

Pointer subscript notation

Pointer offset notation

Arithmetic-ex5.c

 (continued from previous slide…)

Pointer/offset notation where

the pointer is the array name

*(b + 0) = 10

*(b + 1) = 20

*(b + 2) = 30

*(b + 3) = 40

Pointer subscript notation

bPtr[0] = 10

bPtr[1] = 20

bPtr[2] = 30

bPtr[3] = 40

Pointer/offset notation

*(bPtr + 0) = 10

*(bPtr + 1) = 20

*(bPtr + 2) = 30

*(bPtr + 3) = 40

 1

 2 Copying a string using array notation and pointer notation. */

 3 #include <stdio.h>

 4

 5 void copy1(char * const s1, const char * const s2); /* prototype */

 6 void copy2(char *s1, const char *s2); /* prototype */

 7

 8 int main(void)

 9 {

10 char string1[10]; /* create array string1 */

11 char *string2 = "Hello"; /* create a pointer to a string */

12 char string3[10]; /* create array string3 */

13 char string4[] = "Good Bye"; /* create a pointer to a string */

14

15 copy1(string1, string2);

16 printf("string1 = %s\n", string1);

17

18 copy2(string3, string4);

19 printf("string3 = %s\n", string3);

20

21 return 0; /* indicates successful termination */

22

23 } /* end main */

24

25 /* copy s2 to s1 using array notation */

26 void copy1(char * const s1, const char * const s2)

27 {

28 int i; /* counter */

29

30 /* loop through strings */

31 for (i = 0; (s1[i] = s2[i]) != '\0'; i++) {

32 ; /* do nothing in body */

33 } /* end for */

34

35 } /* end function copy1 */

36

37 /* copy s2 to s1 using pointer notation */

38 void copy2(char *s1, const char *s2)

39 {

40 /* loop through strings */

41 for (; (*s1 = *s2) != '\0'; s1++, s2++) {

42 ; /* do nothing in body */

43 } /* end for */

44

45 } /* end function copy2 */

string1 = Hello

string3 = Good Bye

Condition of for loop

actually performs an action

Department of CSE48

ARRAY OF POINTERS

Introduction

• An array of pointer is similar to an array of ant predefined data type

• As a pointer variable always contain an address, an array of pointer is

a collection of addresses.

• These can be address of ordinary isolated variable or of array

elements.

• The elements of an array of pointers are stored in the memory just

like elements of any other kind of array.

• Example is given below..

Example - 1
#include <stdio.h>

const int MAX = 3;

int main () {

int var[] = {10, 100, 200};

int i, *ptr[MAX]; //array of pointers

for (i = 0; i < MAX; i++) {

ptr[i] = &var[i]; /* assign the address of integer. */

}

for (i = 0; i < MAX; i++) {

printf("Value of var[%d] = %d\n", i, *ptr[i]);

}

return 0;

}

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

Arraypointer-ex1.c

Example - 2

#include<stdio.h>

void main()

{

int arr[3]={1,2,3};

int i, *ptr[3];

for(i=0;i<3;i++)

ptr[i]=arr+i;

for(i=0;i<3;i++)

printf("%p %d\n", ptr[i],*ptr[i]);

}

51 Department of CSE

0028FF30 1

0028FF34 2

0028FF38 3

Arraypointer-ex2.c

Arrays of Pointers - Strings
• Arrays can contain pointers

• For example: an array of strings
char *suit[4] = { "Hearts", "Diamonds",

"Clubs", "Spades" };

• Strings are pointers to the first character
• char * – each element of suit is a pointer to a char
• The strings are not actually stored in the array suit, only pointers to

the strings are stored

• suit array has a fixed size, but strings can be of any size

Case study: Roman numeral equivalents – Example

- 3
#include <stdio.h>

void main(void) {

int decimal_number = 101, a = 0, b = 0;

const char *x[11] = {"", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc", "c"};

const char *y[10] = {"", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix"};

while ((decimal_number > 100) || (decimal_number < 0)) {

printf("Enter the decimal numbers in the range 1 to 100:\n");

scanf("%d", &decimal_number);

}

a = decimal_number/10;

b = decimal_number%10;

printf("The equivalent roman is %s%s\n", x[a], y[b]);

}

Enter the decimal numbers in the range 1 to 100:

15

The equivalent roman is xv

Arraypointer-ex3.c

Review

• Dynamic Memory allocation

• Pointer Arithmetic

• Array of pointers

Try it Yourself
• Write a program using dynamic memory allocation to get a student’s mark and

display it back.

• Write a program to do the following

The process for finding a prime is quite simple. First, you know by inspection that 2,
3, and 5 are the first three prime numbers, because they aren’t divisible by
anything other than 1 and themselves. Because all the other prime numbers must
be odd (otherwise they would be divisible by 2), you can work out the next
number to check by starting at the last prime you have and adding 2. When
you’ve checked out that number, you add another 2 to get the next to be
checked, and so on. to check whether a number is actually prime rather than just
odd, you could divide by all the odd numbers less than the number that you’re
checking, but you don’t need to do as much work as that. if a number is not prime,
it must be divisible by one of the primes lower than the number you’re checking.
Because you’ll obtain the primes in sequence, it will be sufficient to check a
candidate by testing whether any of the primes you’ve already found is an exact
divisor. Store all primes in an array using pointers and pointer arithmetic.

55 Department of CSE

Try it Yourself

• Find Largest Element Using Dynamic Memory Allocation and

pointer arithmetic to access the array

• Write a C program to find the sum of two 1D matrices using

dynamic memory and pointer arithmetic.

56 Department of CSE

Try it Yourself –Ans - Student mark
#include<stdio.h>

#include<stdlib.h>

void main()

{

int no, *pt,i;

clrscr();

printf("Enter no of Students :");

scanf("%d",&no);

pt=(int *)malloc(no*2);

if(pt== NULL)

{

printf("\n\nMemory allocation failed!");

exit(0);

}

57 Department of CSE

Student mark
printf("* * * * Enter roll no of students. * * * *\n");

for (i=0;i<no;i++)

{

printf("-->");

scanf("%d",(pt+i));

}

printf("\n* * * * Entered roll no. * * * *\n");

for (i=0;i<no;i++)

{

printf("%d, ",*(pt+i));

}

}

58 Department of CSE

