
Department of CSE1

2.2 Pointers

Objectives

• To understand the need and application of pointers

• To learn how to declare a pointer and how it is represented in

memory

• To learn the relation between arrays and pointers

• To study the need for call-by-reference

• To distinguish between some special types of pointers

2 Department of CSE

Agenda
• Basics of Pointers

• Declaration and Memory Representation

• Operators associated with pointers
• address of operator

• dereferencing operator

• Arrays and Pointers.

• Compatibility of pointers

• Functions and Pointers

• Special types of pointers

• void pointer
• null pointer

• constant pointers

• dangling pointers
• pointer to pointer

3 Department of CSE

Introduction

• A pointer is defined as a variable whose value is the address of

another variable.

• It is mandatory to declare a pointer before using it to store any

variable address.

4 Department of CSE

Pointer Declaration

• General form of a pointer variable declaration:-

datatype *ptrname;

• Eg:-

• int *p; (p is a pointer that can point only integer variables)

• float *fp; (fp can point only floating-point variables)

• Actual data type of the value of all pointers is a long hexadecimal

number that represents a memory address

5 Department of CSE

Initialization of Pointer Variable

• Uninitialized pointers will have some unknown memory address in them.

• Initialize/ Assign a valid memory address to the pointer.

• The variable should be defined before pointer.

• Initializing pointer to NULL

int *p = NULL;

6 Department of CSE

Initialization Assignment

int a;

int *p = &a;

int a;

int *p;

p = &a;

Why Pointers?

• Manages memory more efficiently.

• Leads to more compact and efficient code than that can be obtained

in other ways

• One way to have a function modify the actual value of a variable

passed to it.

• Helps to dynamically allocate memory when the exact amount of

memory required is not known in the beginning.

7 Department of CSE

Referencing/ “Address of ” operator

• To make a pointer point to another variable, it is necessary to obtain
the memory address of that variable.

• To get the memory address of a variable (its location in memory),
put the & sign in front of the variable name.

• & is called the address-of operator, because it returns the memory
address. It‟s a unary operator.

• It is also known as Referencing operator as it refers/points to
another variable of same data type.

8 Department of CSE

Dereferencing/Indirection Operator

• It‟s a unary operator - *

• „*‟ is followed by the pointer name, say p ; i.e.; *p.

• It looks at the address stored in p, and goes to that address and

returns the value.

• This is akin to looking inside a safety deposit box only to find the

number of (and, presumably, the key to) another box, which you

then open.

9 Department of CSE

Referencing & Dereferencing Operators

10 Department of CSE

Sample Code -1 : Simple Pointer

Output:-

Number : 10

Address: 0x7fff4fab3044

Number using pointer : 10

Address using Pointer: 0x7fff4fab3044

11 Department of CSE

#include<stdio.h>

int main()

{

int x=10;

int *ip;

ip=&x;

printf("Number : %d\n",x);

printf("Address: %p\n",(&x));

printf("Number using pointer : %d\n", *ip);

printf("Address using Pointer: %p\n",ip);

return 0;

}

Sample Code -2 : Pointers to different types

Output:-

Number using pointer : 10

Address using Pointer: 0x7fff4f5c31bc

Decimal value : 2.500000

Address of y : 0x7fff4f5c31b8

12 Department of CSE

#include<stdio.h>

int main()

{

int x=10;

int *ip;

float y=2.5, *fp;

fp = &y;

ip=&x;

printf("Number using pointer : %d\n", *ip);

printf("Address using Pointer: %p\n",ip);

printf("Decimal value : %f\n",*fp);

printf("Address of y : %p\n",fp);

return 0;

}

Sample Code -3 : Same pointer to multiple variables

Output:-

Enter three integers : 10 20 30

pointer points to a. Value is 10

pointer points to b. Value is 20

pointer points to c. Value is 30

13 Department of CSE

#include<stdio.h>

int main()

{

int a,b,c,*p; //a,b and c are variables and p is a

pointer

printf("Enter three integers : ");

scanf("%d %d %d",&a,&b,&c);

p = &a;

printf("pointer points to a. Value is %d\n",*p);

p = &b;

printf("pointer points to b. Value is %d\n",*p);

p = &c;

printf("pointer points to c. Value is %d\n",*p);

return 0;

}

Sample Code -4 : Multiple Pointers to same variable

Output:-

Enter an integer : 15

15

15

15

14 Department of CSE

#include<stdio.h>

int main()

{

int a;

int *p = &a;

int *q = &a;

int *r = &a;

printf("Enter an integer : ");

scanf("%d",&a);

printf("%d\n",*p);

printf("%d\n",*q);

printf("%d\n",*r);

return 0;

}

Department of CSE15

Pointer and 1D Array

Relationship between array and pointer

• The name of array is a pointer to the first element

• Address of first element and name of array represent the same memory address.

• Array name can be used as a pointer.

• When a separate pointer is used to point to an array, it is initialized using the
following syntax:-

datatype *ptrname = array_name;

Eg:- int a[5] = {1,2,3,4,5};

int *ptr = a; //Equivalent to writing int *ptr = &a[0];

16 Department of CSE

Sample Program 5 : Pointer and Array I

#include<stdio.h>

int main()

{

int a[5] = {1,2,3,4,5};

int *p = a;

printf("%p %p\n",&a[0],a);

printf("%d %d\n",*a,*p);

return 0;

}

17 Department of CSE

Output:-

0x7fff03b2d380 0x7fff03b2d380

1 1

Sample Program 6 : Pointer and Array II
#include<stdio.h>

int main()

{

int a[5] = {1,2,3,4,5};

int *p = &a[1];

printf("First element : %d %d\n",a[0],p[-1]);

printf("Second element:%d %d\n",a[1],p[0]);

return 0;

}

18 Department of CSE

Output:-

First element : 1 1

Second element: 2 2

Note:-When a pointer to an array is not pointing to the first

element, index can be negative.

Pointer Arithmetic and 1D Arrays

• If „a‟ is an array name, then „a‟ points to first element

• a+1 points to the second element, a+2 points to third element and

so on.

• Generally (a+n) points to (n+1)th element.

• Similarly, for a pointer p, p±n points to a location which is n elements

away from current location.

• Actual address will be p+n*(size of one element).

19 Department of CSE

Pointer arithmetic on different data types

• Size of single element varies with respect

to data type of array.

• „char‟ takes one byte per character stored,

whereas „int‟ and „float‟ takes 4 bytes per

value stored.

• Hence adding 1 to array name points to

different addresses for different data types

20 Department of CSE

Department of CSE21

Modifying values using pointers

Modifying value using pointer

• If ip points to an integer x, *ip can be used in places where x could

have been used.

• *ip = *ip + 10; will modify the value of x by 10

• y = *ip + 1; is equivalent to y = x+1;

• *ip += 1 can be written as ++(*ip) or (*ip)++

22 Department of CSE

Sample Code –7: Updating value using Pointer

Output:-

Number using pointer : 10

Address using Pointer:
0x7fff76d4f8ec

Decimal value : 2.500000

Address of y : 0x7fff76d4f8e8

Updated Number : 11

Updated Number : 55

Updated Number : 56

23 Department of CSE

#include<stdio.h>

int main()

{

int x=10;

int *ip;

float y=2.5, *fp;

fp = &y;

ip=&x;

printf("Number using pointer : %d\n", *ip);

printf("Address using Pointer: %p\n",ip);

printf("Decimal value : %f\n",*fp);

printf("Address of y : %p\n",fp);

x+=1;

printf("Updated Number : %d\n", *ip);

*ip *=5;

printf("Updated Number : %d\n", *ip);

++*ip;

printf("Updated Number : %d\n", *ip);

return 0;

}

Sample Code -8 : Adding two numbers using Pointers

Output:-

10 + 5 = 15

24 Department of CSE

#include<stdio.h>

int main()

{

int a=10,b=5,c;

int *p1 = &a;

int *p2 = &b;

int *res = &c;

*res = *p1 + *p2;

printf("%d + %d = %d\n",*p1,*p2,c);

return 0;

}

Pointer to array : Order of placing „*‟ and „++‟

• Assume that z is an inger array with two values 1 and 2 (int z[2]={1,2};)

• Let ip be a pointer to z; (int *ip = z;)

• printf("%d\n", ++*ip);
• increments content in the address pointed by ip.

• z[0]=1 was taken and incremented by 1.

• In output the value is 2

• printf("%d\n", *++ip);

• increments the address pointed by ip.

• ip currently points to z[1]=3
• In output the value is 3

• Order of placing ‘++’ and ‘*’ is crucial

• ++ followed by * Value is incremented.

• * followed by ++ Address is incremented.

25 Department of CSE

Sample Code Snippet - 9a – ++ before *

• Sample Output

0x7fff0fc66d30

1

2

0x7fff0fc66d30

26 Department of CSE

#include<stdio.h>

main()

{

int z[2]={1,3};

int * ip = z;

printf("%p\n",ip);

printf("%d\n", *ip);

printf("%d\n", ++*ip);

printf("%p",ip);

return 0;

}

Sample Code Snippet -9b : * before ++

• Sample Output

0x7ffffc801740

1

3

0x7ffffc801744

27 Department of CSE

#include<stdio.h>

main()

{

int z[2]={1,3};

int * ip = z;

printf("%p\n",ip);

printf("%d\n", *ip);

printf("%d\n", *++ip);

printf("%p",ip);

return 0;

}

Department of CSE28

Pointer Compatibility

Pointer Compatibility

• Pointers have a type associated with them They can point only

to specific type.

• Two types:-

• Pointer Size Compatibility

• Pointer Dereferencing compatibility

29 Department of CSE

Pointer Size Compatibility

• Size of all pointers is the same; i.e.; every pointer variable holds the

address of one memory location. But the size of variable that the

pointer points to can be different.

• Size of the type that a pointer points to is same as its data size.

• Size is dependent on type; not on the value.

30 Department of CSE

Sample Code -10 : Pointer Size Compatibility

Sample Output

Size of c : 1 | Size of pc : 8 | size of *pc : 1

Size of a : 4 | Size of pa : 8 | size of *pa : 4

Size of d : 8 | Size of pd : 8 | size of *pd : 8

31 Department of CSE

#include<stdio.h>

int main()

{

char c;

char* pc;

int sizeofc = sizeof(c);

int sizeofpc = sizeof(pc);

int sizeofstarpc = sizeof(*pc);

int a;

int* pa;

int sizeofa = sizeof(a);

int sizeofpa = sizeof(pa);

int sizeofstarpa = sizeof(*pa);

double d;

double* pd;

int sizeofd = sizeof(d);

int sizeofpd = sizeof(pd);

int sizeofstarpd = sizeof(*pd);

printf("Size of c : %3d | ",sizeofc);

printf("Size of pc : %3d | ",sizeofpc);

printf("size of *pc : %3d\n",sizeofstarpc);

printf("Size of a : %3d | ",sizeofa);

printf("Size of pa : %3d | ",sizeofpa);

printf("size of *pa : %3d\n",sizeofstarpa);

printf("Size of d : %3d | ",sizeofd);

printf("Size of pd : %3d | ",sizeofpd);

printf("size of *pd : %3d\n",sizeofstarpd);

return 0;

}

Dereferencing Compatibility

• Dereference type is the type of variable that the pointer is

referencing.

• It is usually invalid to assign a pointer of one type to address of a

variable of another type.

• It is also invalid to assign a pointer of one type to pointer of another

type.

• Exception : pointer to void (Will be discussed later.)

32 Department of CSE

Sample Code 11: Pointer Dereferencing Incompatibility

ptrcompat.c: In function ‘main’:

ptrcompat.c:13: warning: assignment from

incompatible pointer type

Output:-

Number using pointer : 10

Address using Pointer: 0x7fffda19b6ec

Decimal value : 2.500000

Address of y : 0x7fffda19b6e8

New value pointed by fp = 0.000000

33 Department of CSE

#include<stdio.h>

int main()

{

int x=10;

int *ip;

float y=2.5, *fp;

fp = &y;

ip=&x;

printf("Number using pointer : %d\n", *ip);

printf("Address using Pointer: %p\n",ip);

printf("Decimal value : %f\n",*fp);

printf("Address of y : %p\n",fp);

fp = &x;

printf("New value pointed by fp = %f\n",*fp);

return 0;

}

Department of CSE34

Pointers and Functions

How to swap two numbers using function?

Output:-

Enter first number : 5

Enter second number: 10

Numbers before function call: 5 10

Numbers before swapping : 5 10

Numbers after swapping : 10 5

Numbers after function call : 5 10

35 Department of CSE

#include<stdio.h>

int main()

{

int a,b;

void swap(int ,int);

printf("Enter first number : ");

scanf("%d",&a);

printf("Enter second number: ");

scanf("%d",&b);

printf("Numbers before function call: %d\t%d\n",a,b);

swap(a,b);

printf("Numbers after function call : %d\t%d\n",a,b);

return 0;

} void swap(int a, int b)

{

int t;

printf("Numbers before swapping : %d\t%d\n",a,b);

t = a;

a = b;

b = t;

printf("Numbers after swapping : %d\t%d\n",a,b);

}

How to swap two numbers using function?

• Values are getting interchanged inside the function. But that is not

getting reflected in main.

• Call-by-value will not interchange numbers.

• If you want to modify the actual parameters, you require „Call-by-

Reference‟.

• This type of function requires pointers.

36 Department of CSE

How to swap two numbers using function?

Output:-

Enter first number : 5

Enter second number: 10

Numbers before function call: 5 10

Numbers before swapping : 5 10

Numbers after swapping : 10 5

Numbers after function call : 10 5

37 Department of CSE

#include<stdio.h>

int main()

{

int a,b;

void swap(int *,int *);

printf("Enter first number : ");

scanf("%d",&a);

printf("Enter second number: ");

scanf("%d",&b);

printf("Numbers before function call: %d\t%d\n",a,b);

swap(&a,&b);

printf("Numbers after function call : %d\t%d\n",a,b);

return 0;

} void swap(int *a, int *b)

{

int t;

printf("Numbers before swapping : %d\t%d\n",*a,*b);

t = *a;

*a = *b;

*b = t;

printf("Numbers after swapping : %d\t%d\n",*a,*b);

}

Points to be noted while using Call-by-Reference

• Requires „*‟ operator along with data type of arguments – in

declaration as well as Function header.

• Requires „&‟ along with actual arguments in Function call.

• Requires „*‟ operator inside function body.

38 Department of CSE

Call-by-Value Call-by-Reference

Function Declaration void swap(int ,int); void swap(int *,int *);

Function Header void swap(int a, int b) void swap(int *a, int *b)

Function Call swap(a,b); swap(&a,&b);

When do you need pointers in functions?

• First scenario – In Call-by-Reference.

• There is a requirement to modify the values of actual arguments.

• Second scenario –While passing array as an argument to a function.

• Third Scenario - If you need to return multiple values from a

function.

39 Department of CSE

Passing array as an argument to a function

• When an array is passed as an argument to a function, it is actually

passed as reference.

• If any modification of array elements is done inside the function, it

actually changes the original value stored in the array.

• Since modifications affect actual values, array need not be returned

from the function.

40 Department of CSE

Sample Code 12 : Passing an array to a function

Output:-

Array before modification:-

1 2 3 4 5

Array after modification:-

1 4 9 16 25

41 Department of CSE

#include<stdio.h>

int main()

{

int a[5]={1,2,3,4,5};

int i;

//First argumnt is an array and second argument is its size

void square(int *,int);

printf("Array before modification:-\n");

for(i=0;i<5;i++)

printf("%d\t",a[i]);

square(a,5);

printf("\nArray after modification:-\n");

for(i=0;i<5;i++)

printf("%d\t",a[i]);

printf("\n");

return 0;

}

void square(int *a,int n)

{

int i;

for(i=0;i<n;i++)

a[i] *= a[i];

}

Returning Multiple values from a function

• Normally, a function can return only a single value from it, using

„return‟.

• What if, you have to return two or more values from a function?

• You can make use of pointers to return multiple values.

• Use one or more additional pointer variables as arguments

42 Department of CSE

Sample Code 13 : Returning Multiple Values

43 Department of CSE

#include<stdio.h>

int main()

{

int a[5];

void MinMax(int *,int,int*,int*);

int i,min,max;

for(i=0;i<5;i++)

{

printf("Number %d : ",(i+1));

scanf("%d",&a[i]);

}

MinMax(a,5,&min,&max);

printf("Minimum element entered : %d\n",min);

printf("Maximum element entered : %d\n",max);

return 0;

}

void MinMax(int *a, int n, int *min,int *max)

{

int i;

*min = *max = a[0];

for(i=1;i<n;i++)

{

if(a[i] < (*min))

*min = a[i];

}

for(i=1;i<n;i++)

{

if(a[i] > (*max))

*max = a[i];

}

}

Sample Code 13 : Returning Multiple Values - Output

Output:-

Number 1 : 2

Number 2 : 1

Number 3 : 3

Number 4 : 5

Number 5 : 4

Minimum element entered : 1

Maximum element entered : 5

44 Department of CSE

Department of CSE45

Special Pointers

Void Pointer

• A generic type that is not associated with a reference type.

• It is not the address of a particular data type.

• A pointer with no reference type that can store only address of any

variable.

• Compatible for assignment purposes only with all other types of

pointers.

• A pointer of any reference can be assigned to void type and vice

verse.

• Restriction : It can not be dereferenced unless it is cast.

• Declaration:- void* pvoid;

• General Casting:- dest_ptr = (dest_ptr_type *) source_ptr_name;

46 Department of CSE

NULL Pointer

• A pointer of any type that is assigned the constant NULL

• The reference type of pointer will not change by the assignment of

NULL

• Eg:-

int* iptr = NULL; //NULL pointer of type „int‟

Char* cptr = NULL; //NULL pointer of type „char‟

47 Department of CSE

Dangling Pointer
• Arises during object destruction, when an object that has an incoming reference

is deleted or deallocated, without modifying the value of the pointer, so that the
pointer still points to the memory location of the deallocated memory.

• Example of creating Dangling pointer

int main()
{

char *ptr=NULL;
{

char c;
ptr = &c;

}
}

• c falls out of scope after the inner block making ptr a dangling pointer

48 Department of CSE

Constant pointer
• A pointer that cannot change the address its holding.

• Once a constant pointer points to a variable then it cannot point to any other variable.

• Declaration:- <type of pointer> * const <name of pointer>

• Example:- int* const ptr;

• Sample Code : Will give the error 7: error: assignment of read-only variable „ptr‟

#include<stdio.h>

int main(void)

{

int var1 = 0, var2 = 0;

int *const ptr = &var1;

ptr = &var2;

printf("%d\n", *ptr);

return 0;

}

49 Department of CSE

Pointer to a Pointer
• A pointer points to an address of another pointer.

• Also called Double Pointer.

• Declaration:- type **ptr_name;

• Example:- int **p;

• Sample:-

int main()

{

int p=5;

int *p1 = &p;

int **pp;

pp = &p1;

printf(“Value of P : %d\n”,**pp);

return 0;

}

Output : Value of P : 5

50 Department of CSE

Summary

• Discussed about Pointer and its importance.

• Discussed relationship between array and pointer

• Discussed about Call-by-Reference and other places where pointers

are needed for functions.

• Discussed special pointers.

51 Department of CSE

References

• Books/Materials

1. C Programming Course – Compiled HTML Help File

2. Brian W Kernighan, Dennis M Ritchie, “The C Programming

Language”, 2nd Edition, PHI

• Web

1. http://www.tutorialspoint.com/cprogramming/c_pointers.htm

2. http://www.cprogramming.com/tutorial/c/lesson6.html

52 Department of CSE

http://www.tutorialspoint.com/cprogramming/c_pointers.htm
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

