
Department of CSE1

2.1 Arrays

Objectives

• To define an array, initialize an array and refer to individual elements

of an array.

• To define symbolic constants.

• To define and manipulate multiple-subscripted arrays.

2 Department of CSE

Agenda

• Introducing Arrays

• Declaring Array Variables

• Initializing Arrays

• Accessing Array Elements

• Copying Arrays

• Multidimensional Arrays

3 Department of CSE

Introduction
 An array is a collection of elements of the same type that are referenced by a common

name.

 Compared to the basic data type (int, float & char) it is an aggregate or derived data

type.

 All the elements of an array occupy a set of contiguous memory locations.

 Why need to use array type? ….. Consider the following issue:

4 Department of CSE

"We have a list of 1000 students' marks of an

integer type. If using the basic data type (int),

we will declare something like the following…"

int studMark0, studMark1, studMark2, ...,

studMark999;

Introduction cont…
 Declaration part by using normal variable declaration

int main(void)

{

int studMark1, studMark2, studMark3, studMark4, …,

…, studMark998, stuMark999, studMark1000;

…

…

return 0;

}

 By using an array, one can declare like this,

int studMark[1000];

 This will reserve 1000 contiguous memory locations for storing the
students‟ marks.

5 Department of CSE

Introduction cont…

• Graphically, this can be depicted as

6 Department of CSE

 So… array has simplified our declaration and of course, manipulation of

the data.

One Dimensional Array: Declaration

 Dimension refers to the array's size, which is how big the array is.

 A single or one dimensional array declaration has the following form,

array_element_data_type array_name[array_size];

 Here, array_element_data_type define the base type of the array, which is

the type of each element in the array.

 array_name is any valid C identifier name that obeys the same rule for the

identifier naming.

 array_size defines how many elements the array will hold.

7 Department of CSE

 For example, to declare an array of 30 characters, that construct a
people name, we could declare,
char cName[30];

 In this statement, the array character can store up to 30 characters
with the first character occupying location cName[0] and the last
character occupying cName[29].

 Note that the index runs from 0 to 29. In C, an index always starts
from 0 and ends with array's (size-1).

 So, take note the difference between the array size and
subscript/index terms.

8 Department of CSE

 Examples of the one-dimensional array declarations,

int xNum[20], yNum[50];

float fPrice[10], fYield;

char chLetter[70];

 The first example declares two arrays named xNum and yNum of type

int. Array xNum can store up to 20 integer numbers while yNum can

store up to 50 numbers.

 The second line declares the array fPrice of type float. It can store up to

10 floating-point values.

 fYield is basic variable which shows array type can be declared together

with basic type provided the type is similar.

 The third line declares the array chLetter of type char. It can store a

string up to 69 characters.

 Why 69 instead of 70? Remember, a string has a null terminating

character (\0) at the end, so we must reserve for it.
9 Department of CSE

10 Department of CSE

Starting from a given memory location, the successive array

elements are allocated space in consecutive memory locations.

One Dimensional Array: Initialization

Method 1--Initialization at the time of declaration

 Giving initial values to an array.

 Initialization of an array may take the following form,

type array_name[size] = {a_list_of_value};
 For example:

int idNum[7] = {1, 2, 3, 4, 5, 6, 7};

float fFloatNum[5] = {5.6, 5.7, 5.8, 5.9, 6.1};
char chVowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

 The first line declares an integer array idNum and it immediately assigns the values 1, 2,
3, ..., 7 to idNum[0], idNum[1], idNum[2],..., idNum[6] respectively.

 The second line assigns the values 5.6 to fFloatNum[0], 5.7 to fFloatNum[1], and so
on.

 Similarly the third line assigns the characters 'a' to chVowel[0], 'e' to chVowel[1], and so
on. Note again, for characters we must use the single apostrophe/quote (') to enclose
them.

 Also, the last character in chVowel is NULL character ('\0').

11 Department of CSE

 Initialization of an array of type char for holding strings may take the

following form,

char array_name[size] = "string_lateral_constant";

 For example, the array chVowel in the previous example could have been

written more compactly as follows,

char chVowel[6] = "aeiou";

 When the value assigned to a character array is a string (which must be

enclosed in double quotes), the compiler automatically supplies the

NULL character but we still have to reserve one extra place for the

NULL.

 For unsized array (variable sized), we can declare as follow,

char chName[] = "Mr. Dracula";

 C compiler automatically creates an array which is big enough to hold all

the initializer.

12 Department of CSE

• To set every element to same value

int n[5] = { 0 };

• If array size omitted, initializers determine size

int n[] = { 1, 2, 3, 4, 5 };

• 5 initializers, therefore 5 element array

int n[5] = { 1, 2, 3, 4, 5 };

• If not enough initializers, rightmost elements 0

• If too many syntax error

13 Department of CSE

Different cases: Initialization

One Dimensional Array: Initialization

Method 2 – Set the values using loop

int main()

{ int n[10]; // n is an array of 10 integers

// initialize elements of array n to 0

for (int i = 0; i < 10; i++)

n[i] = 0; // set element at location i to 0

}

14 Department of CSE

Array size

• Can be specified with constant variable (const)
const int size = 20;

• Constants cannot be changed
• Constants must be initialized when declared
• Also called named constants or read-only variables

• The sizeof operator can determine the size of an
array (in bytes).

int a[10];
sizeof(a) = 40 (assuming each integer requires
4 bytes)

15 Department of CSE

One Dimensional Array: Accessing array elements
Individual elements of the array can be accessed by using the array name followed by the

element subscript enclosed in square brackets as follows:

array_name[subscript]
Notice that the array elements start from 0, not 1, so the first element of the a array is a[0]

and the last element is a[size-1] where size is the number of element in the a array.

The following program demonstrates how to access elements of an array:

#include <stdio.h>

int main()

{

const int SIZE = 5;

int a[SIZE],i;

for(i = 0; i < SIZE; i++)

{ a[i] = i;

printf("a[%d] = %d\n",i,a[i]);

}
}

16 Department of CSE

One Dimensional Array: Copying Arrays

Can you copy array using a syntax like this?

list = myList;

This is not allowed in C.

You have to copy individual elements from one array to the other
as follows:

for (int i = 0; i < ARRAY_SIZE; i++)

{

list[i] = myList[i];

}

17 Department of CSE

Rules to be followed when using arrays

• The data type can be any valid data type such as int, float, char, etc.
[structure or union –Will be dealt in later chapter].

• All elements of an array must always be of the same data type

• The name of an array must follow naming rules of variables.

• The size of the array must be zero or a constant positive integer.

• The array index must evaluate to an integer between 0 and n-1

where n is the number of elements in the array.

18 Department of CSE

http://www.zentut.com/c-tutorial/c-data-types/
http://www.zentut.com/c-tutorial/c-structure/
http://www.zentut.com/c-tutorial/c-union/
http://www.zentut.com/c-tutorial/c-variables/

Don‟t Do‟s

You cannot

• use = to assign one array variable to another

a = b; /* a and b are arrays */

• use == to directly compare array variables

if (a = = b)

• directly scanf or printf arrays

printf (“......”, a);

19 Department of CSE

Illustrations

Summing Elements in an array

Use a variable named total to store the sum. Initially total is 0.
Add each element in the array to total using a loop like this:

double total = 0;

for (int i = 0; i < ARRAY_SIZE; i++)

{

total += myList[i];

}

20 Department of CSE

Finding Maximum in an array

Use a variable named max to store the largest element. Initially max is
myList[0]. To find the largest element in the array myList, compare
each element in myList with max, update max if the element is greater
than max.

double max = myList[0];

for (int i = 1; i < ARRAY_SIZE; i++)

{

if (myList[i] > max) max = myList[i];

}

21 Department of CSE

Finding index of the largest element in the array

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < ARRAY_SIZE; i++)
{
if (myList[i] > max)
{

max = myList[i];
indexOfMax = i;

}
}

22 Department of CSE

Shifting Elements

double temp = myList[0]; // Retain the first element

// Shift elements left

for (int i = 1; i < myList.length; i++)

{

myList[i - 1] = myList[i];

}

// Move the first element to fill in the last position

myList[myList.length - 1] = temp;

23 Department of CSE

Try it Yourself - Predict the output
1. #include <stdio.h>

int main()

{

int arr[5];

// Assume that base address of arr is 2000 and size of integer

// is 32 bit

arr++;

printf("%u", arr);

return 0;

}

(A) 2002

(B) 2004

(C) 2020

(D) lvalue required

24 Department of CSE

Try it Yourself - Predict the output
2. What will be the output of the program ?

#include<stdio.h>

int main()

{ int a[5] = {5, 1, 15, 20, 25};

int i, j, m; i = ++a[1];

j = a[1]++; m = a[i++];

printf("%d, %d, %d", i, j, m);

return 0; }

A. 2, 1, 15

B. 1, 2, 5

C. 3, 2, 15

D. 2, 3, 20

25 Department of CSE

Try it Yourself - Predict the output
3. What is the output of the following program?

int main()

{

int i;

int arr[5] = {0};

for (i = 0; i <= 5; i++)

printf("%d ", arr[i]);

return 0;

}

A. Compiler Error: Array index out of bound.

B. The always prints 0 five times followed by garbage value

C. The program always crashes.

D. The program may print 0 five times followed by garbage value, or may crash if address
(arr+5) is invalid.

26 Department of CSE

Answers --- Predict the output
1. D) lvalue required

Array name in C is implemented by a constant pointer. It is not
possible to apply increment and decrement on constant types.

2. C) 3, 2, 15

Step 1: int a[5] = {5, 1, 15, 20, 25};The variable arr is declared as an integer array with a size of 5
and it is initialized to

a[0] = 5, a[1] = 1, a[2] = 15, a[3] = 20, a[4] = 25 .

Step 2: int i, j, m;The variable i,j,m are declared as an integer type.

Step 3: i = ++a[1]; becomes i = ++1; Hence i = 2 and a[1] = 2

Step 4: j = a[1]++; becomes j = 2++; Hence j = 2 and a[1] = 3.

Step 5: m = a[i++]; becomes m = a[2]; Hence m = 15 and i is incremented by 1(i++ means 2++
so i=3)

Step 6: printf("%d, %d, %d", i, j, m); It prints the value of the variables i, j, m

Hence the output of the program is 3, 2, 15

3. D)The program may print 0 five times followed by garbage value, or may crash if address (arr+5) is
invalid.

27 Department of CSE

Try it Yourself – Code debugging
#include <stdio.h>

#define MAXSIZE 10

void main()

{ int array[MAXSIZE];

int i, num, negative_sum = 0;

printf ("Enter the value of N \n");

scanf("%d", &num);

printf("Enter %d numbers \n", num);

for (i = 0; i < num; i++)

{ scanf("%d", array[i]); }

/* Summation starts */

for (i = 0; i < num; i++)

{ if (array[i] < 0) { negative_sum = negative_sum + array[i];

}

printf("\n Sum of all negative numbers = %d\n", negative_sum);

}

28 Department of CSE

Answers – Code Debugging
#include <stdio.h>

#define MAXSIZE 10

void main()

{ int array[MAXSIZE];

int i, num, negative_sum = 0;

printf ("Enter the value of N \n");

scanf("%d", &num);

printf("Enter %d numbers \n", num);

for (i = 0; i < num; i++)

{

scanf("%d", &array[i]);

} /* Summation starts */

for (i = 0; i < num; i++)

{

if (array[i] < 0) { negative_sum = negative_sum + array[i];

}

printf("\n Sum of all negative numbers = %d\n", negative_sum);

}

29 Department of CSE

Try it Yourself - Simple word problems

To Print the Alternate Elements in an Array Array - NH-

WP3.c

Find 2 Elements in the Array such that Difference between

them is Largest Array - NH-WP1.c

To Sort the Array in an Ascending Order Array - NH-WP2.c

30 Department of CSE

Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP3.c
Array - NH-WP1.c
Array - NH-WP1.c
Array - NH-WP1.c
Array - NH-WP1.c
Array - NH-WP1.c
Array - NH-WP1.c
Array - NH-WP2.c
Array - NH-WP2.c
Array - NH-WP2.c
Array - NH-WP2.c
Array - NH-WP2.c
Array - NH-WP2.c

Multidimensional Arrays

• C also allows an array to have more than one dimension.

31 Department of CSE

For example, a two-dimensional array consists of a certain number of rows and columns:

const int NUMROWS = 3;

const int NUMCOLS = 7;

int Array[NUMROWS][NUMCOLS];

Array[2][5] 3rd value in 6th column
Array[0][4] 1st value in 5th column

The declaration must specify the number of rows and the number of columns, and both must be
constants.

0 1 2 3 4 5 6

0 4 18 9 3 -4 6 0

1 12 45 74 15 0 98 0

2 84 87 75 67 81 85 79

Starting from a given memory location, the

elements are stored row-wise

in consecutive memory locations.

x: starting address of the array in memory

c: number of columns

k: number of bytes allocated per array element

a[i][j] is allocated memory location at address

x + (i * c + j) * k

32 Department of CSE

Multi Dimensional Array - Initialization
Method 1--Initialization at the time of declaration

int Array1[2][3]={{1, 2, 3},{4, 5, 6}};

int Array2[2][3] = { 1, 2, 3, 4, 5 };

int Array3[2][3] = { {1, 2} , {4 } };

Rows of Array1: 1 2 3
4 5 6

Rows of Array2: 1 2 3
4 5 0

Rows of Array3: 1 2 0
4 0 0

33 Department of CSE

Multi Dimensional Array - Initialization
Method 2– Setting values using loop (nested loop)
int main()

{
const int NUMROW = 3;
const int NUMCOL = 7;
int Array1[NUMROW][NUMCOL];

for (int row = 0; row < NUMROW; row++)

{

for (int col = 0; col < NUMCOL; col++)

{

scanf(“%d”,&Array1[row][col];

}

}

34 Department of CSE

Multidimensional Array – Accessing Elements

35 Department of CSE

 0 1 2 3 4

 0

 7

 0 1 2 3 4

 1

 2

 3

 4

 0

 1

 2

 3

 4

m a t r i x [2] [1] = 7 ;

m a t r i x = n e w i n t [5] [5] ;

 3

 7

 0 1 2

 0

 1

 2

i n t [] [] a r r a y = {

 { 1 , 2 , 3 } ,

 { 4 , 5 , 6 } ,

 { 7 , 8 , 9 } ,

 { 1 0 , 1 1 , 1 2 }

} ;

1

2

3

4

5

6

 8

9

1 0

1 1

1 2

Multidimensional Array - Illustrations
To add two matrix entered by the user

and print it.

#include<stdio.h>

void main() { int a[3][3],b[3][3],c[3][3];

int i,j;

printf(“enter the elements in both the array:”);

for(i=0 ; i<3 ; i++)

{

for(j=0 ; j<3 ; j++)

{

scanf(“%d”,&a[i][j]);

}

}

for(i=0 ; i<3 ; i++)

{

for(j=0 ; j<3 ; j++)

{

scanf(“%d”,&b[i][j]);

}

}

for(i=0 ; i<3 ; i++)

{

for(j=0 ; j<3 ; j++)

{

c[i][j]=a[i][j]+b[i][j];

printf(“%d”,c[i][j]);

}

printf(“n”);

} }
36 Department of CSE

Multidimensional Array - Illustrations
To input a matrix and print its

transpose.

#include<stdio.h>

#include<conio.h>

void main()

{ int a[3][3],b[3][3];

int i,j; clrscr();

printf(“enter the elements in the array”);

for(i=0 ; i<3 ; i++)

{

for(j=0 ; j<3 ; j++)

{

scanf(“%d”,&a[i][j]);

}

}

for(j=0 ; i<3 ; i++)

{

for(i=0 ; j<3 ; j++)

{

printf(“%2d”,&b[j][i]);

}

}

getch();

}

37 Department of CSE

Try it Yourself - Predict the output
1. #include <stdio.h>

int main()

{

int a[][] = {{1,2},{3,4}};

int i, j;

for (i = 0; i < 2; i++)

for (j = 0; j < 2; j++)

printf("%d ", a[i][j]);

return 0;

}

A 1 2 3 4

B Compiler Error in line " int a[][] = {{1,2},{3,4}};"

C 4 garbage values

D 4 3 2 1

38 Department of CSE

Try it Yourself - Predict the output

2. Consider the following declaration of a „two-dimensional array in C:

char a[100][100];

Assuming that the main memory is byte-addressable and that the

array is stored starting from memory address 0, the address of

a[40][50] is…..?

A. 4040

B. 4050

C. 5040

D. 5050

39 Department of CSE

Answers – Predict the Output

1. Answer: (B)

There is compilation error in the declaration

int a[][] = {{1,2},{3,4}};

Except the first dimension, every other dimension must be specified.

int arr[] = {5, 6, 7, 8} //valid

int arr[][5] = {}; //valid

int arr[][] = {}; //invalid

int arr[][10][5] = {}; //valid

int arr[][][5] = {}; //invalid

40 Department of CSE

Answers – Predict the Output

2. Answer: (B)

Address of a[40][50] = Base address +

40*100*element_size +

50*element_size

= 0 + 4000*1 + 50*1 = 4050

41 Department of CSE

Try it Yourself - Simple word problems

To Check if a given Matrix is an Identity MatrixMDArray-

NH-WP!.c

To Calculate the Sum of the Elements of each Row & Column

MDArray-NH-WP2.c

42 Department of CSE

MDArray-NH-WP!.c
MDArray-NH-WP!.c
MDArray-NH-WP!.c
MDArray-NH-WP!.c
MDArray-NH-WP!.c
MDArray-NH-WP2.c
MDArray-NH-WP2.c
MDArray-NH-WP2.c
MDArray-NH-WP2.c
MDArray-NH-WP2.c

Common Programming Errors

• It is important to note the difference between the “seventh element
of the array” and “array element seven.” Because array subscripts
begin at 0, the “seventh element of the array” has a subscript of 6,
while “array element seven” has a subscript of 7 and is actually the
eighth element of the array. This is a source of “off-by-one” errors.

• Forgetting to initialize the elements of an array whose elements
should be initialized.

• Providing more initializers in an array initializer list than there are
elements in the array is a syntax error.

• Ending a #define preprocessor directive with a semicolon.
Remember that preprocessor directives are not C statements.

43 Department of CSE

• Assigning a value to a symbolic constant in an executable statement is

a syntax error. A symbolic constant is not a variable. No space is

reserved for it by the compiler as with variables that hold values at

execution time.

• Not providing scanf with a character array large enough to store a

string typed at the keyboard can result in destruction of data in a

program and other runtime errors. This can also make a system

susceptible to worm and virus attacks.

• Referencing a double-subscripted array element as a[x, y]
instead of a[x][y].

44 Department of CSE

Summary

• The ability to use a single name to represent a collection of

items and refer to an item by specifying the item number

enables us to develop concise and efficient programs.

• C allows arrays of more than one dimensions.

• Exact limit is determined by the compiler

45 Department of CSE

