
18CS634 Programming Paradigms 3-0-14

Course Introduction

Programming languages have been conceived and designed to provide a natural way to
express thought processes and thus algorithms. Various interpretations of this natural way
has resulted in varied styles of languages which we call Programming Paradigms. This
course intends to focus on following programming paradigms: functional programming,
declarative programming, object-oriented programming and programming for concurrency
and distributed computing. Students will develop practical competency in languages like
Haskell/Clojure, Prolog and Scala representing distinct paradigms. They will also be
exposed to choicest selection of other related languages.

Course Objectives

This course is aimed at

1. Introducing students to functional, logic and concurrent programming paradigms.
2. Enabling students to formulate newer abstractions (both procedure and data) in the

above paradigms.
3. Familiarizing students with writing functional and concurrent programs.
4. Preparing students to solve complex real-world problems using appropriate

programming paradigms.

Course Outcomes

At the end of the course, the students will be able to

CO Statement

CO1 Understand and apply the concepts that form the basis of functional, logic and
concurrent programming paradigms.

CO2 Formulate abstractions with procedures and data in different programming
paradigms.

CO3 Write programs in different programming paradigms especially functional, logic
and concurrent paradigms.

CO4 Formulate, implement and solve a given problem scenario using appropriate
programming paradigm.

CO-PO Mapping

COs PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3

CO1 1 1 2 3 3

CO2 2 1 3 2 3 3

CO3 1 1 2 2 3 3

CO4 3 3 3 2 2 3 3

Program Specific Objectives (PSOs) (for Reference)

1. Hone the skill of computer science professionals in areas of research and
innovation.

2. Develop experts with high professional competence in recent and futuristic
technologies.

3. Create man power with technical competency in computer science to design and
develop solutions for the societal problems.

Justification for CO-PO Mapping

PO1 Engineering Knowledge and PO3 Design/Development of Solutions: CO2 and CO4
has been given relatively higher affinity as they are related to the design and formulation of
abstraction towards solving (engineering) problems. CO1 and CO3 has been given
relatively lower affinity as the knowledge of programming paradigms assist in this process.

PO2 Problem Analysis: Though design and formulation of abstraction (CO2) has high
relevance in development of solutions, in an iterative approach it helps in better and
refined problem analysis. Formulating and solving a problem scenario (CO4) has high
relevance both towards problem analysis and solution development.

PO4 Investigation: Formulating and solving a problem scenario (CO4) necessitates
investigation into the problem and hence has high affinity.

PO5 Modern Tool Usage: Writing programs in different programming paradigms pivot
around programming languages (which are essentially tools) for respective programming
paradigms.

PSO1 Research and Innovation: With increasing complexity of real-world problems,
different programming paradigms facilitates innovative way of solving those problems.

PSO2 Professional Competence and PSO3 Technical Competency: Knoweldge of different
programming paradigms, formulating abstractions and solving problems have higher
affinity to the said program specific objectives.

Syllabus

Overview of different programming paradigms. Functional Programming – functional style,
lists and recursion, higher-order functions, infinite lists, recursion without base cases,
currying, folds.

Logic Programming – programming “without algorithms”, prolog lists and recursion,
constraint progamming. Object-oriented (OO) Programming – What makes a language OO
(encapsulation, inheritance and polymorphism), OO languages, functional support in OO
languages. Multi-paradigm languages.

Concurrency – concurrency vs parallelism, communicating sequential processes,
deadlocks, starvation, Threads vs Actor model for concurrency, Issues with concurrency:
safety, liveness, fairness. Concurrency in functional programming.

References:

1. Michael L. Scott, Programming Language Pragmatics, Morgan Kaufmann, 4th

Edition, 2015.
2. Richard Bird, Thinking Functionally with Haskell, Cambridge Universiy Press, 2014.
3. Ivan Bratko, Prolog Programming for Artificial Intelligence, Pearson Education, 4th

Edition, 2011.
4. Aleksandar Prokopec, Learning Concurrent Programming in Scala, Packt

Publishing, 2nd Edition, 2017.

Evaluation Pattern: 4D

Assessment Weight

Quizzes/Tutorial/Lab
Assignments

25

Case Study/Mini
Project

30

Periodical 1/2 15

End Semester 30

