
Department of CSE1

1.7 Recursion

Objectives

• To learn the concept and usage of Recursion in C

• Examples of Recursion in C

2 Department of CSE

What is recursion?

• Sometimes, the best way to solve a problem is by solving a
smaller version of the exact same problem first

• Recursion is a technique that solves a problem by solving a
smaller problem of the same type

• a function that calls itself

Directly or

Indirectly (a function that is part of a cycle in the sequence of
function calls.)

3 Department of CSE

Pictorial representation of direct and indirect

recursive calls

4 Department of CSE

f1 f2 fn…f1

Direct recursive call Indirect recursive call

Syntax

function_name(parameter list)

{

…

//‘c’ statements

…

function_name(parameter values) // recursive call

…

}

5 Department of CSE

Problems defined recursively

• There are many problems whose solution can be defined
recursively

Example: n factorial

6 Department of CSE

1 if n = 0
n!= (recursive solution)

(n-1)!*n if n > 0

1 if n = 0
n!= (closed form solution)

1*2*3*…*(n-1)*n if n > 0
(also called as iterative

method)

• Iterative implementation

int Factorial(int n)
{
int fact = 1;

for(int count = 2; count <= n; count++)
fact = fact * count;

return fact;
}

7 Department of CSE

Coding the factorial function

Coding the factorial function

(An Example of Recursive Call)

• Recursive implementation

int Factorial(int n)

{

if (n==0) // base case

return 1;

else

return n * Factorial(n-1);

}

8 Department of CSE

9 Department of CSE

Coding the factorial function (cont.)

10 Department of CSE

=f(3)

=f(2)

=f(1)

2*f(2)

2*f(1)

2*f(1)

=f(0)

More Interesting Example

Towers of Hanoi

11 Department of CSE

• Move stack of disks from one peg to another

• Move one disk at a time

• Larger disk may never be on top of smaller disk

A Classical Case: Towers of Hanoi

12 Department of CSE

• The towers of Hanoi problem involves moving a
number of disks (in different sizes) from one
tower (or called “peg”) to another.

– The constraint is that the larger disk can never be
placed on top of a smaller disk.

– Only one disk can be moved at each time

– Assume there are three towers available.

Source Temp Destination

A Classical Case: Towers of Hanoi

13 Department of CSE

A Classical Case: Towers of Hanoi

• This problem can be solved easily by recursion.

• Algorithm:

if n is 1 then
move disk 1 from the source tower to the destination tower

else
1. move n-1 disks from the source tower to the temp tower.

2. move disk n from the source tower to the destination
tower.

3. move n-1 disks from the temp tower to the source tower.

14 Department of CSE

Tower of Hanoi Program

15 Department of CSE

#include <stdio.h>

void move (int n, int a, int
c, int b);

int main() {

int disks;

printf ("How many disks?");

scanf ("%d", &disks);

move (disks, 1, 3, 2);

return 0;

} // main

/* PRE: n >= 0. Disks are arranged
small to large on the pegs a, b,
and c. At least n disks on peg
a. No disk on b or c is smaller
than the top n disks of a.

POST: The n disks have been moved
from a to c. Small to large
order is preserved. Other disks
on a, b, c are undisturbed. */

void move (int n, int a, int c, int
b) {

if (n > 0)

{

move (n-1, a, b, c);

printf ("Move one disk
from %d to %d\n", a, c);

move (n-1, b, c, a);

} // if (n > 0)

return;

} // move

• Is pre-condition satisfied before
this call to move?

Tower of Hanoi Program

16 Department of CSE

#include <stdio.h>

void move (int n, int a, int
c, int b);

int main() {

int disks;

printf ("How many disks?");

scanf ("%d", &disks);

move (disks, 1, 3, 2);

return 0;

} // main

/* PRE: n >= 0. Disks are arranged
small to large on the pegs a, b,
and c. At least n disks on peg
a. No disk on b or c is smaller
than the top n disks of a.

POST: The n disks have been moved
from a to c. Small to large
order is preserved. Other disks
on a, b, c are undisturbed. */

void move (int n, int a, int c, int
b) {

if (n > 0)

{

move (n-1, a, b, c);

printf ("Move one disk
from %d to %d\n", a, c);

move (n-1, b, c, a);

} // if (n > 0)

return;

} // move

• If pre-condition is satisfied here, is it still

satisfied here?

And here?

Tower of Hanoi Program

17 Department of CSE

#include <stdio.h>

void move (int n, int a, int
c, int b);

int main() {

int disks;

printf ("How many disks?");

scanf ("%d", &disks);

move (disks, 1, 3, 2);

return 0;

} // main

/* PRE: n >= 0. Disks are arranged
small to large on the pegs a, b,
and c. At least n disks on peg
a. No disk on b or c is smaller
than the top n disks of a.

POST: The n disks have been moved
from a to c. Small to large
order is preserved. Other disks
on a, b, c are undisturbed. */

void move (int n, int a, int c, int
b) {

if (n > 0)

{

move (n-1, a, b, c);

printf ("Move one disk
from %d to %d\n", a, c);

move (n-1, b, c, a);

} // if (n > 0)

return;

} // move

If pre-condition is true and

if n = 1, does move satisfy

the post-condition?

Can we reason that this

program correctly plays

Tower of Hanoi?

Problems Suitable for Recursive Functions

• One or more simple cases of the problem have a
straightforward solution.

• The other cases can be redefined in terms of problems
that are closer to the simple cases.

• The problem can be reduced entirely to simple cases by
calling the recursive function.

– If this is a simple case
solve it

else
redefine the problem using recursion

18 Department of CSE

Splitting a Problem into Smaller Problems

19 Department of CSE

• Assume that the problem of size 1 can be solved
easily (i.e., the simple case).

• We can recursively split the problem into a
problem of size 1 and another problem of size n-
1.

Recursion vs. iteration

• Iteration can be used in place of recursion

– An iterative algorithm uses a looping construct

– A recursive algorithm uses a branching structure

• Recursive solutions are often less efficient, in terms of both
time and space, than iterative solutions

• Recursion can simplify the solution of a problem, often
resulting in shorter, more easily understood source code

20 Department of CSE

Recursion vs. Iteration (Contd…)

• Some simple recursive problems can be “unwound” into

loops

• But code becomes less compact, harder to follow!

• Hard problems cannot easily be expressed in non-

recursive code

• Tower of Hanoi

• Robots or avatars that “learn”

• Advanced games

21 Department of CSE

Try it Yourself

• Generate a fibonacci series using recursion
Recursive definition for {fn }:

INITIALIZATION: f0 = 0, f1 = 1

RECURSION : fn = fn-1+fn-2 for n > 1

• Finding the GCD

• Euclid’s algorithm makes use of the fact that

gcd(x,y) = gcd(y, x mod y)

gcd (x,y) = x if y=0

gcd(y, x mod y) otherwise

22 Department of CSE

Summary

• Discussed so far the

• What is a recursion (function) ?

• What is the need for the recursive function?

• Writing recursive functions using C

• How a hard/difficult problem can be solved by recursion

• Comparison of Recursion with Iterative method

23 Department of CSE

