k] Department of CSE /

g

Objectives

* To learn the concept and usage of Recursion in C

. Examples of Recursion in C

KZ Department of CSE

What is recursion?

Sometimes, the best way to solve a problem is by solving a
smaller version of the exact same problem first

Recursion is a technique that solves a problem by solving a
smaller problem of the same type

a function that calls itself

Directly or

Indirectly (a function that is part of a cycle in the sequence of
function calls.)

Department of CSE /

e

k4

Pictorial representation of direct and indirect

recursive ca.

e e »

Is

Direct recursive call Indirect recursive call

Department of CSE

™

g

Syntax

function_name(parameter list)

d

// ‘¢’ statements

function_name(parameter values) // recursive call

KS Department of CSE

Problems defined recursively

* There are many problems whose solution can be defined

recursively
: n factorial
1 fn=0 _ _
nl= _ (recursive solution)
(n-1)!™*n ifn>0
1 fn=0 _
nl= (closed form solution)

1#2*3* . *(n-1)*n 1fn>0 -
(also called as iterative
method)

Department of CSE

g

Coding the factorial function

* Jterative implementation

Int Factorial(int n)

{

Int fact = 1;

for(int count = 2; count <= n; count++)
fact = fact * count;

return fact;

}

K7 Department of CSE

Coding the factorial function

(An Example of Recursive Call)

* Recursive implementation

Int Factorial(int n)
{
If (n==0)
return 1;
else
return n * Factorial(n-1);

}

Department of CSE

Coding the factorial function (cont.)

Final value = 120

|
51 51=5*24=120is returned

5" 4l

4 =47* 6 =245 refurned

* 3
4 13 31=3*2=6isretuned
3* 2l "2l
; S 2l =2"1 =2Isrefuned
& | 2'11
i j 1=1*%1=1Isreturned
120l 1*0l
| 1 1 is retumned
1 1

k9 Department of CSE

; _ :«3; D%f(2) push copy of f
call {(2)
’;z 2 2*{(1) push copy of f
call f(1)
X =1 ush copy of {
yo2 2%(1) P Py
call {(0)
push copy of {
Xx=0
y="? =£(0)
return
pop copy of f
i
y=2"1=2
return LL]“‘:‘"® =f(1) pop copy of f
-~
y=2"3=6
return y t1/=@ =f(2) pop copy of f
‘_,_,.ﬁ-""
y=2"7=14
relumy + 1 = @\:f(S) pop copy of f

\

value returned by call is 15

Klo Department of LSE

More Interesting Example

I

[owers of Hanoi

* Move stack of disks from one peg to another

* Move one disk at a time

* Larger disk may never be on top of smaller disk

kl 1 Department of CSE

a I
A Classical Case: Towers of Hanoi

 The towers of Hanoi problem involves moving a
number of disks (in different sizes) from one
tower (or called “peg”) to another.

— The constraint is that the larger disk can never be
placed on top of a smaller disk.

— Only one disk can be moved at each time
— Assume there are three towers available.

.

2] I

B3]

Source Temp Destination

kl 2 Department of CSE /

A Classical Case: Towers of Hanoi

A B o
1| |
2
3
4 5
B B
A B C
1
2 4
3 5

kl 3 Department of CSE

A Classical Case: Towers of Hanoi

* This problem can be solved easily by recursion.
. Algorithm:
if n is 1 then

move disk 1 from the source tower to the destination tower

else
1. move n-1 disks from the source tower to the temp tower.

2. move disk n from the source tower to the destination
tower.
3. move n-1 disks from the temp tower to the source tower.

Kl 4 Department of CSE

Tower of Hanoi Program

#include <stdio.h> /* PRE: n >= 0. Disks are arranged
small to large on the pegs a, b,
and c. At least n disks on peg

void move (int n, int a, int a. No disk on b or ¢ is smaller

c, int b); than the top n disks of a.
POST: The n disks have been moved

)) from a to c. Small to large

int main() { order is preserved. Other disks

int disks; on a, b, ¢ are undisturbed. */

printf ("How many disks?");
void move (int n, int a, int ¢, int

scanf ("%d", &disks); b) {
if (n > 0)
move (disks, 1, 3, 2); {

move (n-1, a, b, c);
return O; printf ("Move one disk
from %d to %d\n", a, c);

} // main e a);

* Is pre-condition satisfied before p
this call to move?

} // move

Kl 5 Department of CSE

Tower of Hanoi Program

#include <stdio.h>

void move (int n, int a, int

c, int b);

int main() {

/* PRE:

n >= 0. Disks are arranged
small to large on the pegs a, b,
and c. At least n disks on peg
a. No disk on b or ¢ is smaller
than the top n disks of a.

POST: The n disks have been moved

from a to c. Small to large
order is preserved. Other disks

int disks; on a, b, ¢ are undisturbed. */
printf ("How many disks?") ;
scanf ("%d" sdisks) ; void'move (int n, int a, int c¢, int
4 14 b) {
if (n > 0)
move (disks, 1, 3, 2);
move (n-1, a, b, c);
. printf ("Move one disk
* If pre-condition is satistied here, is it still from 3d go %d\n", a, c);
o 5 move (n-1Xb, c, a);
satisfied here? } /) if (n 2\0)
Y // move

Department of CSE

\\?

Tower of Hanoi Program

#include <stdio.h> /* PRE: n >= 0. Disks are arranged

small to large on the pegs a, b,
and c. At least n disks on peg

void move (int n, int a, int a. No disk on b or ¢ is smaller

c, int b); than the top n disks of a.

POST: The n disks have been moved
from a to c. Small to large

int main() { order is preserved. Other disks

int disks; on a, b, ¢ are undisturbed. */

printf ("How many disks?");
void move (int n, int a, int ¢, int

scanf ("%d", &disks); b) {
if (n > 0)
move (disks, 1, 3, 2); {
move (n-1, a, b, c);
return 0; printf ("Move one disk
} // main from %d to %d\n", a, c);
move (n-1, b, c, a);
If pre—condition is true and } // if—t=—-—0 '
o : Can we reason that this
ifn = 1, does move satisfy .
. return; program correctly plays
the post-condition? yo/) move _
Tower of Hanoi?

kl 7 Department of CSE

g

™
Problems Suitable for Recursive Functions

* One or more simple cases of the problem have a
straightforward solution.
* The other cases can be redefined in terms of problems

that are closer to the simple cases.

* The problem can be reduced entirely to simple cases by

calling the recursive function.

— Ifthis is a Sjmp]e case
solve it

else
redefine the prob]em using recursion

Kl 8 Department of CSE /

a I
Splitting a Problem into Smaller Problems

size n —>\ sizen-1 —> \ sizen-2 —> size 2 —— size 1
problem problem problem problem problem
\ \ e o o \ \
size 1 size 1 size 1 size 1
problem problem problem problem

« Assume that the problem of size 1 can be solved
easily (i.e., the simple case).

« \We can recursively split the problem into a

problem of size 1 and another problem of size n-
1.

Kl9 Department of CSE /

Recursion vs. iteration

[teration can be used in place of recursion
— An iterative algorithm uses a looping construct

— A recursive algorithm uses a bmnching structure

Recursive solutions are often less efficient, in terms of both
time and space, than iterative solutions

Recursion can simplity the solution of a problem, often
resulting in shorter, more easily understood source code

Department of CSE /

Recursion vs. [teration (Contd. . .)

e Some simple recursive problems can be “unwound” into

loops

* But code becomes less compact, harder to follow!

* Hard problems cannot easily be expressed in non-

recursive code
* Tower of Hanoi
* Robots or avatars that “learn”

* Advanced games

vl Department of CSE

g
Try itYourself 1’ i1

e (Generate a fibonacci series using recursion

Recursive definition for {f }:
INITIALIZATION: £=0,f=1
RECURSION : fo=f. 1), forn>1

* Finding the GCD
» Euclid’s algorithm makes use of the fact that
gcd(x,y) = ged(y, x mod y)
ged (x,y) = Xif y=0
gcd(y, x mod y) otherwise

KZ 2 Department of CSE

g

Summary

e Discussed so far the

* What is a recursion (function) ?

What is the need for the recursive function?

Writing recursive functions using C

How a hard/difficult problem can be solved by recursion

Comparison of Recursion with Iterative method

KZ 3 Department of CSE

