
Department of CSE1

1.6 Functions

Objectives

• To understand the concept of modularization.

• To know about the types of functions.

• To study about formal arguments and actual arguments.

• To understand the need of passing arguments to function.

2 Department of CSE

Agenda
• Introduction to Function

• Types of C Functions

• Function naming rule in C

• General Form of a Function

• Parameters / Arguments

• Scope of a Function

• Returning Value – Control from a Function

• Three Main Parts of a Function

• Categorization based on Arguments and Return value

• Calling Functions –Two Methods

• Creating user defined header files

• Storage classes

• Summary
3 Department of CSE

Introduction to Functions

4 Department of CSE

Benefits of Using Functions:

• It provides modularity to the program.

•Easy code reusability. You just have to call the function by its name to

use it.

• In case of large programs with thousands of code lines, debugging and

editing becomes easier if you use functions.

Credits: http://www.studytonight.com/c/types-of-function-calls.php

Contd..

Department of CSE5

A function is independent:

 It is “completely” self-contained

 It can be called at any place of your code and can be ported to another program

reusable - Use existing functions as building blocks for

new programs

Readable - more meaningful

procedural abstraction - hide internal details

 factoring of code- divide and conquer

Contd..
A function:

receives zero or more parameters,

performs a specific task, and

returns zero or one value

A function is invoked / called by name and parameters

Communication between function and invoker code is through the
parameters and the return value

Department of CSE6

In C, no two functions can have the same name

Types of C Functions

• Library function

• User defined function

Library function

• Library functions are the in-built function in C programming system

For example:

main() - -The execution of every C program

printf() - prinf() is used for displaying output in C.

scanf() - scanf() is used for taking input in C.

Department of CSE7

Some of the math.h Library Functions

• sin() returns the sine of a radian angle.

• cos() returns the cosine of an angle in radians.

• tan() returns the tangent of a radian angle.

• floor() returns the largest integral value less than or equal to x.

• ceil() returns the smallest integer value greater than or equal to x.

• pow() returns base raised to the power of exponent(xy).

Some of the conio.h Library Functions

• clrscr()  used to clear the output screen.

• getch()  reads character from keyboard.

• textbackground()  used to change text background

Department of CSE8

Contd..

User defined function

• Allows programmer to define their own function according to their

requirement.

Advantages of user defined functions

• It helps to decompose the large program into small segments which makes

programmer easy to understand, maintain and debug.

• If repeated code occurs in a program. Function can be used to include

those codes and execute when needed by calling that function.

• Programmer working on large project can divide the workload by making

different functions.

Department of CSE9

Function naming rule in C
Name of function includes only alphabets, digit and underscore.

First character of name of any function must be an alphabet or underscore.

Name of function cannot be any keyword of c program.

Name of function cannot be global identifier.

Name of function cannot be exactly same as of name of function in the same scope.

Name of function is case sensitive

Name of function cannot be register Pseudo variable

Department of CSE10

The General Form a Function

Department of CSE11

The ret-type specifies the type of data that the function returns.

A function may return any type (default: int)of data except an array

The parameter (formal arguments) list is a comma-separated list of variable names and

their associated types

The parameters receive the values of the arguments when the function is called

A function can be without parameters:

An empty parameter list can be explicitly specified as such by placing

the keyword void inside the parentheses

More about formal argument/parameter list ..………

Department of CSE12

(type varname1, type varname2, . . . , type varnameN)

You can declare several variables to be of the same type

By using a comma separated list of variable names.

In contrast, all function parameters must be declared

individually, each including both the type and name

• f(int i, int k, int j)

• f(int i, k, float j) Is it correct?

• /* wrong, k must have its own type specifier */

Scope of a function

Department of CSE13

Each function is a discrete block of code. Thus, a function defines

a block scope:

A function's code is private to that function and cannot be accessed by

any statement in any other function except through a call to that

function.

• Variables that are defined within a function are local variables

• A local variable comes into existence when the function is entered and is

destroyed upon exit

• A local variable cannot hold its value between function calls

Contd..

Department of CSE14

The formal arguments /parameters to a

function also fall within the function's scope:

is known throughout the entire function

comes into existence when the function is

called and is destroyed when the function

is exited.

Even though they perform the special task of receiving
the value of the arguments passed to the function, they
behave like any other local variable

Department of CSE15

Returning value, control from a function
If nothing returned

• return;

• or, until reaches right curly brace

If something returned

• return expression;

Only one value can be returned from a C function

A function can return only one value, though it can return one of several
values based on the evaluation of certain conditions.

Multiple return statements can be used within a single function
(eg: inside an “if-then-else” statement…)

The return statement not only returns a value back to the calling
function,
it also returns

control back to the calling function

Three Main Parts of a Function

Department of CSE16

• Function Declaration (Function prototype)

• Function Definition

• Function Call

Structure of a C program with a Function

17 Department of CSE

Function prototype giving the name, return type and the type of formal

arguments

main()

{

……….

Call to the function:

Variable to hold the value returned by the function = Function name with actual arguments

………

}

Function definition:

Header of function with name, return type and the type of formal arguments as given in

the prototype

Function body within { } with local variables declared , statements and return statement

Function Prototype

Department of CSE18

• Functions should be declared before they are used

• Prototype only needed if function definition comes after use in

• program

• Function prototypes are always declared at the beginning of

• the program indicating :

• name of the function, data type of its arguments &

• data type of the returned value

return_type function_name (type1 name1, type2 name2,
..., typen namen);

Function Definition

Department of CSE19

Function header

return_type function_name (type1 name1, type2 name2,

...,typen namen)

{

local variable declarations

.... otherstatements...

return statement

}

Function Body

Function call

Department of CSE20

A function is called from the main()

A function can in turn call a another function

Function call statements invokes the function which means the
program control passes to

that function

Once the function completes its task, the program control is
passed back to the calling

environment

Contd..

Department of CSE21

Variable = function_name (actual argument list);

Or

Function_name (actual argument list);

Function name and the type and number of arguments must

match with that of the function declaration stmt and the header of the

function definition

Examples:

result = sum(5, 8); display(); calculate(s, r, t);

Return statement

Department of CSE22

To return a value from a C function you must explicitly return

it with a return statement

return <expression>;

The expression can be any valid C expression that resolves

to the type defined in the function header

add(int a, int b) add(int a, int b)

{ {

int c = a+ b;;

return (a + b); return (c);

} }

Ex: Function call: int value = add(5,8)

Here, add() sends back the value of the expression (a + b) or value of c to
main()

Examples

Department of CSE23

Function Prototype Examples
double squared (double number);

void print_report (int);

int get _menu_choice (void);

Function Definition Examples
double squared (double number)

{

return (number * number);
}

void print_report (int report_number)

{

if (report_nmber == 1)
printf(“Printer Report 1”);

else
printf(“Not printing Report 1”);

}

Example C program..

Department of CSE24

#include<stdio.h>

float average(float, float, float);

int main()
Function prototype

{
float a, b, c;

printf(“Enter three numbers please\n”);

scanf(“%f, %f, %f ”,&a, &b, &c);

printf(“Avg of 3 numbers = %.3f\n”, average(a, b, c));

return 0;

}

Function call

Contd..

Department of CSE25

The definition of function average:

float average(float x, float y, float z) //local variables x, y, z

{

float r; // local variable

r = (x+y+z)/3;

return r;

}

Function header

Function Body

Categorization based on arguments and return

value

• Function with no arguments and no return value

• Function with no arguments and return value

• Function with arguments but no return value

• Function with arguments and return value.

Credits : http://www.programiz.com/c-programming/types-user-defined-functions

Department of CSE26

Calling Functions –Two methods

Department of CSE27

Call by value

Copy of argument passed

Changes in function do not effect original

Use when function does not need to modify argument

• Avoids accidental changes

Call by reference

Passes original argument

Changes in function effect original

Only used with trusted functions

Call by Value

Department of CSE28

When a function is called by an argument/parameter which is not a pointer the

copy of the argument is passed to the function.

Therefore a possible change on the copy does not change the original value of the argument.

Example:

Function call func1 (a, b, c);

Function header int func1 (int x, int y, int z)

Here, the parameters x , y and z are initialized by the values of a, b and c

int x = a

int y = b

int z = c

Example C Program

Department of CSE29

void swap(int, int);

main()

{

int a=10, b=20;

swap(a, b);

printf(“ %d %d \n”, a, b);

}

void swap (int x, int y)

{

int temp = x;

x= y;

y=temp;

}

Intricacies of the preceding example

Department of CSE30

• In the preceding example, the function main() declared and initialized two
integers a and b, and then invoked the function swap() by passing a and
b as arguments to the function swap().

• The function swap() receives the arguments a and b into its
parameters x and y. In fact, the functionswap() receives a copy of
the values of a and b into its parameters.

• The parameters of a function are local to that function, and
hence, any changes made by the called function to its parameters
affect only the copy received by the called function, and do not
affect the value of the variables in the called function. This is the call by
value mechanism.

Call by Reference

Department of CSE31

When a function is called by an argument/parameter which is

a pointer (address of the argument) the copy of the address of

the argument is passed to the function

Therefore, a possible change on the data at the referenced address

changes the original value of the argument.

Will be dealt later in detail…

Illustration for creating user defined header files

using user created functions

Make Your Own Header File ?

Step1 : Type this Code

int add(int a,int b)

{

return(a+b);

}

• In this Code write only function definition as you write in General C

Program

Step 2 : Save Code

• Save Above Code with [.h] Extension .

• Let name of our header file be myhead [myhead.h]

• Compile Code if required.
Department of CSE32

Step 3 : Write Main Program
#include<stdio.h>

#include"myhead.h“

main() {

int num1 = 10, num2 = 10, num3;

num3 = add(num1, num2);

printf("Addition ofTwo numbers : %d", num3);

}

Here,

• Instead of writing < myhead.h> use this terminology “myhead.h”

• All the Functions defined in the myhead.h header file are now ready for use .

• Directly call function add(); [Provide proper parameter and take care of

return type]

Note : While running your program precaution to be taken :

Both files [myhead.h and sample.c] should be in same folder.

Department of CSE33

Storage Classes
• A storage class defines the scope (visibility) and life time of variables

and/or functions within a C Program.

• Automatic variables auto

• External variables  extern

• Static variables static

• Register variables  register

auto - Storage Class

auto is the default storage class for all local variables.

{

int Count;

auto int Month;

}

The example above defines two variables with the same storage class. auto

can only be used within functions, i.e. local variables.

Department of CSE34

extern - Storage Class

• These variables are declared outside any function.

• These variables are active and alive throughout the entire program.

• Also known as global variables and default value is zero.

static - Storage Class

• The value of static variables persists until the end of the program.

• It is declared using the keyword static like

static int x;

static float y;

• It may be of external or internal type depending on the place of there
declaration.

• Static variables are initialized only once, when the program is compiled.

Department of CSE35

register - Storage Class

• These variables are stored in one of the machine’s register and are declared
using register keyword.

eg. register int count;

• Since register access are much faster than a memory access keeping
frequently accessed variables in the register lead to faster execution of
program.

• Don’t try to declare a global variable as register. Because the register will
be occupied during the lifetime of the program.

Department of CSE36

Department of CSE37

1. Predict the output of the program.

1. Solution

Answer: 9

Explanation:

• Step 1: int fun(int); Here we declare the prototype of the function fun().

• Step 2: int i = fun(10);The variable i is declared as an integer type and the result of the

fun(10) will be stored in the variable i.

• Step 3: int fun(int i){ return (i++); } Inside the fun() we are returning a value

return(i++). It returns 10. because i++ is the post-increement operator.

• Step 4: Then the control back to the main function and the value 10 is assigned to variable

i.

• Step 5: printf("%d\n", --i); Here --i denoted pre-increement. Hence it prints the value 9.

Department of CSE38

2. What will be the output of the program?

Department of CSE39

2. Solution

Answer: Infinite loop

Explanation:

• Step 1: int no=5; The variable no is declared as integer type and initialized to 5.

• Step 2: reverse(no); becomes reverse(5); It calls the function reverse() with '5' as parameter.

• The function reverse accept an integer number 5 and it returns '0'(zero) if(5 == 0) if the

given number is '0'(zero) or else printf("%d,", no); it prints that number 5 and calls the

function reverse(5);.

• The function runs infinetely because the there is a post-decrement operator is used. It will

not decrease the value of 'n' before calling the reverse() function. So, it calls reverse(5)

infinitely.

• Note: If we use pre-decrement operator like reverse(--n), then the output will be 5, 4, 3, 2,

1. Because before calling the function, it decrements the value of 'n'.

Department of CSE40

3. Predict the output of the program.

Department of CSE41

3.Solution

Answer: Hello

Explanation:

• Step 1: int i; The variable i is declared as an integer type.

• Step 1: int fun();This prototype tells the compiler that the function fun() does not accept

any arguments and it returns an integer value.

• Step 1: while(i) The value of i is not initialized so this while condition is failed. So, it does

not execute the while block.

• Step 1: printf("Hello\n"); It prints "Hello".

• Hence the output of the program is "Hello".

Department of CSE42

1. Point out the error in the program.

Department of CSE43

1. Solution

Answer: Error: Not allowed assignment

Explanation:

The function void f() is not visible to the compiler while going

through main() function. So we have to declare this prototype void

f(); before to main() function. This kind of error will not occur in

modern compilers.

Department of CSE44

2. Point out the error in the program.

Department of CSE45

2. Solution

Answer:

Error: return statement cannot be used with conditional operators

Explanation:

In a ternary operator, we cannot use the return statement. The

ternary operator requires expressions but not code.

Department of CSE46

3. There is an error in the below program. Which statement will you add to

remove it?

Department of CSE47

3. Solution

Answer: Add prototype: float f(int, float);

Explanation:

• The correct form of function f prototype is

float f(int, float);

Department of CSE48

Summary

• Discussed the modularization techniques in C.

• Illustration of functions with different parts – Prototype, Call and

Definition.

• Discussed formal and actual parameters and passing mechanism.

49 Department of CSE

