
Department of CSE1

1.5 REPETITION

Objectives
Concept of loop

Loop invariant

Pretest and post-test loops

 Initialization and updating

Counter controlled loops

Event controlled loops

2 Department of CSE

Agenda
• Introduction to iterative construct

• Counter controlled loops
• While loop
• Do-while loop
• For loop

• Nesting of loops

• Control of loop execution

• Infinite loops

• Try it yourself exercises

• Event controlled loops
• Sentinel controlled
• Flag controlled

• Homework problems

3 Department of CSE

Loops
• A loop is a sequence of statements that will be executed

repeatedly zero or more times.

• A loop can be executed a set number of times, or as long as
some condition is met.

• Each single repetition of the loop is known as an iteration of
the loop.

 Sometimes you might want to think of a loop as being executed until some condition
is met. Of course, looping until one condition is met is the same as looping as long
as the opposite of the condition is met. For instance, if you loop until x equals 5,
that is the same as looping as long as x does not equal 5.

4 Department of CSE

Iterative construct: while loop

while(expression)

statement;

The statement will be executed as long as the expression remains true,

or until a special command is encountered to end the loop.

Of course, this statement can be a compound statement, and probably

it usually will be.

Looping in a while loop

Evaluate Condition

true

false

To repeatedly execute a statement over and over while a given condition is true

When the condition of the while loop is no longer logically true,

the loop terminates and

program execution resumes at the next statement following the loop

Example #1
int x = 3;

while (x > 0)

{

printf("Hello World!\n");

x = x – 1;

}

7 Department of CSE

The loop condition is written first,

followed by the body of the loop

The loop condition is evaluated first, and

if it is true,

the loop body is executed

After the execution of the loop body,

the condition in the while is evaluated again.

 This repeats until the condition becomes false.

This "while" loop will undergo three iterations.

During each, the phrase "HelloWorld!" will be printed on a separate line.

Why does it execute three times?

The variable "x" is initialized above the loop with the value of 3.

The loop will repeat as long as the expression "x > 0" is true.

At the end of each loop iteration, "x" is decreased by 1.

After three iterations, "x" will have the value of 0, and the expression will no

longer be true, so the loop will end.

Note that there is no semicolon after the right parenthesis ending the expression

that "while" is checking.

 If there were, it would mean that the program would repeat the null

statement (statements that do nothing) until the condition were not true.

The condition starts off true, it will stay true, and will loop without stopping…

8 Department of CSE

Example #2
int x, y;

printf("Enter two numbers: ");

scanf("%d %d", &x, &y);

while (y != 0)

{ printf("%d / %d = %d\n", x, y, x/y);

printf("Enter two numbers: ");

scanf("%d %d", &x, &y);

}

9 Department of CSE

This code repeatedly asks the user to enter two integers.

As long as the second number is not zero, the program prints the result of dividing the

first number by the second.

If the second number is 0, the program ends.

Example #3
int i = 0;

int loop_count = 5;

printf("Case1:\n");

while (i<loop_count) {

printf("%d\n",i); i++; }

printf("Case2:\n");

i=20;

while (0) {

printf("%d\n",i); i++; }

10 Department of CSE

Cases:1 and 2

• Case1 (Normal) : Variable „i‟ is initialized to 0 before „while‟ loop;

iteration is increment of counter variable „i‟; condition is execute loop till „i‟ is

lesser than value of „loop_count‟ variable i.e. 5.

• Case2 (Always FALSE condition) : Variables „i‟ is initialized before

„while‟ loop to „20‟; iteration is increment of counter variable „i‟; condition is

FALSE always as „0‟ is provided that causes NOT to execute loop statements

and loop statement is NOT executed.

Here, it is noted that as compared to „do-while‟ loop, statements in „while‟ loop

are NOT even executed once which executed at least once in „do-while‟ loop

because „while‟ loop only executes loop statements only if condition succeeds.
11 Department of CSE

Example #3 Contd…

printf("Case3:\n");

i=0;

while (i++<5) {

printf("%d\n",i); }

printf("Case4:\n");

i=3;

while (i < 5 && i >=2) {

printf("%d\n",i); i++; }

12 Department of CSE

Cases:3 and 4

• Case3 (Iteration in condition check expression) :Variable „i‟ is

initialized to 0 before „while‟ loop; here note that iteration and condition is

provided in same expression. Here, observe the condition is execute loop till „i‟

is lesser than „5‟ and loop iterates 5 times.

Unlike „do-while‟ loop, here condition is checked first then „while‟ loop

executes statements.

• Case4 (Using logical AND condition) :Variable „i‟ is initialized

before „while‟ loop to „3‟; iteration is increment of counter variable „i‟;

condition is execute loop when „i‟ is lesser than „5‟ AND „i‟ is greater or equal

to „2‟.

13 Department of CSE

./a.out

• Case1: 0 1 2 3 4

• Case2:

• Case3: 1 2 3 4 5

• Case4: 3 4 #

14 Department of CSE

Find any differences ?

int x = 3;

while (x-- > 0)

printf("Hello World!\n");

 Here, since the decrement operator is
placed after the variable, the old value
of the variable is used to compare
against 0.

 The first time through, this value is 3,
then 2, then 1.

 The fourth time, it is 0 so we exit the
loop.

15 Department of CSE

int x = 3;

while (--x >= 0)

printf("Hello World!\n");

Now, the decrement operator is placed

before the variable, so the value of "x" is

decreased and then its value is used.

The first time through, this value is 2, then

1, then 0.

The fourth time, it is –1 so we exit the

loop.

Write a program….

• Ask the user to enter a number, and if it is positive, sum the digits.

• The user enters a number, and the value is stored in "x".

• Store sum in the variable "sum_digits", which is initialized to zero.

Hint:

 As long as "x" is greater than zero, we mod it by 10, which gets the right-
most digit of the number, and we add this digit to "sum_digits".

 Then we divide "x" by 10. Remember, when we do integer division, the
fractional part is cut off, so in effect, we are removing the right-most digit of
"x" (which we have already added to the sum).

16 Department of CSE

int x, digit, sum_digits;

printf("Enter a positive integer: ");

scanf("%d", &x);

sum_digits = 0;

while (x > 0)

{

digit = x % 10;

sum_digits = sum_digits + digit;

x = x / 10;

}

printf("The sum of the digits is %d!\n", sum_digits);

17 Department of CSE

Solution

Iterative construct: do - while loop

do

statement

while(condition);

It is similar to the "while" statement, but the condition is checked at the end.

Looping in a do-while loop

Evaluate Condition

true

Execute body of loop

false

Statements inside the statement block are executed once,

and then expression is evaluated

in order to determine whether the looping is to continue

int i;

i = 0;

do{

printf("The value of i is now %d\n",i);

i = i + 1;

} while (i < 5);

The body of the loop comes first,
followed by the loop condition at the end

The loop is entered into straightaway,
and after the first execution of the loop body,
the loop condition is evaluated

The body of the loop is guaranteed to execute at least once

Subsequent executions of loop body would be subject to loop condition evaluating to true

Example #1

Example #2

int x = 3;

do

{

printf("Hello World!\n");

x = x –1;

} while (x > 0);

21 Department of CSE

Notice now that there is a semicolon after the right parenthesis ending the

expression while is checking.

If you forget it, you will get a compiler error when you try to compile the

program.

Example #3

do

{

printf(“Enter a number from 1 to 100: ”);

scanf(“%d”, &x);

} while ((x < 1) || (x > 100));

22 Department of CSE

If the user does not enter a number in the correct range, the “while” condition will

be met, and the loop will undergo another iteration, prompting the user again.

Only after the user enters a number from 1 to 100 will the expression be false and

the loop end.

Example #4

int i = 0;

int loop_count = 5;

printf("Case1:\n");

do {

printf("%d\n",i); i++;

} while (i<loop_count);

printf("Case2:\n");

i=20;

do {

printf("%d\n",i); i++;

} while (0);
23 Department of CSE

• Case1 (Normal) :Variable „i‟ is initialized to 0 before „do-while‟ loop;

iteration is increment of counter variable „i‟; condition is to execute loop till „i‟

is lesser than value of „loop_count‟ variable i.e. 5.

• Case2 (Always FALSE condition) : Variables „i‟ is initialized before

„do-while‟ loop to „20‟; iteration is increment of counter variable „i‟; condition

is FALSE always as „0‟ is provided that causes NOT to execute loop statements.

 But, it is noted here in output that loop statement is executed once because

do-while loop always executes its loop statements at least once even if

condition fails at first iteration.

24 Department of CSE

Cases: 1 and 2

Example #4 Contd…

printf("Case3:\n");

i=0;

do {

printf("%d\n",i);

} while (i++<5);

printf("Case4:\n");

i=3;

do {

printf("%d\n",i); i++;

} while (i < 5 && i >=2);

25 Department of CSE

• Case3 (Iteration in condition check expression) : Variable „i‟

is initialized to 0 before „do-while‟ loop; here note that iteration and

condition is provided in same expression.

 Here, observe the condition is to execute loop till „i‟ is lesser than „5‟, but in

output 5 is also printed that is because, here iteration is being done at

condition check expression, hence on each iteration „do-while‟ loop executes

statements ahead of condition check.

• Case4 (Using logical AND condition) : Variable „i‟ is initialized

before „do-while‟ loop to „3‟; iteration is increment of counter variable „i‟;

condition is execute loop when „i‟ is lesser than „5‟ AND „i‟ is greater or equal

to „2‟.
26 Department of CSE

Cases: 3 and 4

./a.out

• Case1: 0 1 2 3 4

• Case2: 20

• Case3: 0 1 2 3 4 5

• Case4: 3 4 #

27 Department of CSE

Example #5: Programs with Menus

A)dd part to catalog

R)emove part from catalog

F)ind part in catalog

Q)Uit

Select option: A

<interaction to add a part>

A)dd part to catalog

R)emove part from catalog

F)ind part in catalog

Q)Uit

Select option: <next option>

Menu Loop

do {

showOptions();

printf(―Select option:―);

scanf(― %c‖,&optn);

execOption(optn);

while (!((optn == ‗Q‘) || (optn == ‗q‘)));

N O T q u i t

s e le c te d

tru e

fa ls e

S h o w O p tio n s

R e a d O p tio n

E x e c u te O p tio n

Menu Options

void showOptions() {

printf(―A)dd part to catalog\n‖);

printf(―R)emove part from catalog\n‖);

printf(―F)ind part in catalog\n‖);

printf(―Q)uit\n‖);

}

Executing Options

void execOption(char option) {

switch (option) {

case ‗A‘: case ‗a‘: addPart(); break;

case ‗R‘: case ‗r‘: delPart(); break;

case ‗F‘: case ‗f‘: fndPart(); break;

case ‗Q‘: case ‗q‘: break;

default: printf(―Unknown option

%c\n‖,option); break;

}

}

Iterative construct: for loop

for (expr1; expr2; expr3)

{

statement1;

statement2; . . .

}

The for loop construct is by far the most powerful and compact of all the loop constructs provided
by C.

This loop keeps all loop control statements on top of the loop, thus making it visible to the
programmer.

This loop works well where the number of iterations of the loop is known before the loop is
entered into.

for (initialization; condition; update)

33 Department of CSE

The initialization is usually an assignment of a variable to some starting value,

and the update is often an assignment which changes this variable.

The statement will be executed as long as the condition, which is an expression, is

true.

All three fields are optional.

 If the initialization or update are left out, they are considered null

statements (statements that do nothing).

 If the condition is left out, it is considered to be always true,

and the loop will continue until a statement is reached to break out of the loop.

The first part :
• Expression 1: is executed before the loop is entered
 This is usually the initialization of the loop variable

The second part :
• Expression 2: is a test, is evaluated immediately after expression1,

and then later is evaluated again after each successful looping
The loop is terminated when this test returns a false

The third part :
• Expression 3: is a statement to be run every time the loop body is

completed
 It is not evaluated when the for statement is first encountered.

However, expression3 is evaluated after each looping and
before the statement goes back to test expression2 again.

This is usually an increment of the loop counter

for loop….

35 Department of CSE

Example #1

int n, count, sum=0;

printf("Enter the value of n.\n");

scanf("%d",&n);

for(count=1;count<=n;++count) //for loop

terminates if count>n

{

sum+=count; // this statement is

equivalent to sum=sum+count

}

printf("Sum=%d",sum); return 0;

36 Department of CSE

 In this program, the user is asked to enter the value of n.

 Suppose you entered 19 then, count is initialized to 1 at first.

 Then, the test expression in the for loop,i.e., (count<= n) becomes true.

 So, the code in the body of for loop is executed which makes sum to 1.

 Then, the expression ++count is executed and again the test expression is

checked, which becomes true.

 Again, the body of for loop is executed which makes sum to 3 and this process

continues.

When count is 20, the test condition becomes false and the for loop is

terminated.

• Note: Initial, test and update expressions are separated by semicolon(;).

37 Department of CSE

Example #2
int i = 0, k = 0; float j = 0;

int loop_count = 5;

printf("Case1:\n");

for (i=0; i < loop_count; i++) {

printf("%d\n",i); }

printf("Case2:\n");

for (j=5.5; j > 0; j--) {

printf("%f\n",j); }

printf("Case3:\n");

for (i=2; (i < 5 && i >=2); i++) {

printf("%d\n",i); }
38 Department of CSE

Cases: 1,2 and 3

• Case1 (Normal) : Variable „i‟ is initialized to 0; condition is to execute

loop till „i‟ is lesser than value of „loop_count‟ variable; iteration is increment

of counter variable „i‟

• Case2 (Using float variable) : Variable „j‟ is float and initialized to

5.5; condition is to execute loop till „j‟ is greater than „0‟; iteration is

decrement of counter variable „j‟.

• Case3 (Taking logical AND condition) : Variable „i‟ is initialized

to 2; condition is to execute loop when „i‟ is greater or equal to „2‟and lesser

than „5‟; iteration is increment of counter variable „i‟.

39 Department of CSE

Example #2 Contd…
printf("Case4:\n");

for (i=0; (i != 5); i++) {

printf("%d\n",i); }

printf("Case5:\n");

/* Blank loop */ for (i=0; i < loop_count; i++) ;

printf("Case6:\n");

for (i=0, k=0; (i < 5 && k < 3); i++, k++) {

printf("%d\n",i); }

printf("Case7:\n");

i=5;

for (; 0; i++) { printf("%d\n",i); }
40 Department of CSE

Case : 4,5,6 and 7
• Case4 (Using logical NOT EQUAL condition) : Variable „i‟ is

initialized to 0; condition is to execute loop till „i‟ is NOT equal to „5‟; iteration is
increment of counter variable „i‟.

• Case5 (Blank Loop) : This example shows that loop can execute even if there
is no statement in the block for execution on each iteration.

• Case6 (Multiple variables and conditions) : Variables „i‟ and „k‟ are
initialized to 0; condition is to execute loop when „i‟ is lesser than „5‟and „k‟ is lesser
than „3‟; iteration is increment of counter variables „i‟ and „k‟.

• Case7 (No initialization in for loop and Always FALSE
condition) : Variables „i‟ is initialized before for loop to „5‟; condition is FALSE
always as „0‟ is provided that causes NOT to execute loop statement; iteration is
increment of counter variable „i‟.

41 Department of CSE

./a.out
• Case1: 0 1 2 3 4

• Case2: 5.500000 4.500000 3.500000 2.500000
1.500000 0.500000

• Case3: 2 3 4

• Case4: 0 1 2 3 4

• Case5:

• Case6: 0 1 2

• Case7:

42 Department of CSE

What is the o/p?

43 Department of CSE

1.

int i;

for (i=0; i<16; i++)

printf(―%X %x %d\n‖, i, i, i);

2.

for (i=0; i<8; i++)

sum += i;

3.

for (i=0; i<8; i++);

sum += i;

Conversion

 Anything that can be done with a “for” statement can also be done with an equivalent “while”
statement.

 for (initialization; condition; update)
statement;

• The conversion is simply:

initialization;
while (condition)
{

statement;
update;

}

44 Department of CSE

for (i=0, j=10; i!=j; i++, j--)

{

/* statement block */

}

Comma operator to combine multiple

expressions in for loop
Expr1: integer variables i and j are

initialized, respectively, with 0 and 10
when the for statement is first encountered.

Expr2: relational expressions i!=j is
evaluated and tested. If it evaluates to zero
(false), the loop is terminated.

Expr3: After each iteration of the loop, i is
increased by 1 and j is reduced by 1.

Then the expression i!=j is evaluated to
determine whether or not to execute the loop
again.

 So, here we are initializing "power" to be 1 and "result" to be 2. At the
end of each iteration of the loop, we increase "power" by 1 and multiply
"result" by 2.

 We continue as long as "power" is less than or equal to 10.

int i, j;

for (i=0, j=8; i<8; i++, j--)

printf(―%d + %d = %d\n‖, i, j, i+j);

int power, result;

for (power = 1, result = 2; power <= 10; power++, result = result * 2)

{

printf(“2 to the power of %d equals %d.\n”, power, result);

}

Examples

Nesting of loops

 Sometimes, within compound statements that are part of loops, there will be

additional loops.

• Loops within loops are referred to as nested loops.

 Sometimes you may hear people refer to outer loops (the loop encountered

first) and inner loops (any loops embedded within an outer loop).

47 Department of CSE

initialize outer loop

while (outer loop condition)

{ . . .

initialize inner loop

while (inner loop condition)

{

inner loop processing and update

}

. . .

}

Nested loops …. While loop

for (i=1; i<=3; i++) /* outer loop */

{

printf(―Start of iteration %d of the outer loop.\n‖, i);

for (j=1; j<=4; j++) /* inner loop */

printf(― Iteration %d of inner loop.\n‖, j);

printf(―End of iteration %d of outer loop.\n‖, i);

}

Nested loops …. for loop

Example #1
int x, sum_digits, digit, temp;

for (x = 1; x <= 1000; x++)

{

temp = x;

sum_digits = 0;

while (temp > 0)

{

digit = temp % 10;

sum_digits = sum_digits + digit;

temp = temp / 10;

}

if (sum_digits == 5)

printf(―%d\n‖, x);

}
50 Department of CSE

Example #2

int row, col;

printf("\t0\t1\t2\t3\t4\t5\t6\t7\t8\t9\n");

for (row = 0; row <= 9; row++)

{

printf("%d", row);

for (col = 0; col <= 9; col++)

{

printf("\t%d", row*col);

}

printf("\n");

}

51 Department of CSE

Using the „\t‟ symbol within a string passed to "printf" causes a tab to

be printed, and the computer skips to the start of the next 8 character

column.

The „\t‟ symbol is a special way of representing the tab character, in the

same way that the „\n‟ symbol is a special way of representing the

newline character.

 The first "printf" in this program skips the first column (since no

characters appear to the left of the first tab), then prints out column

headers 0 through 0 in the next 9 columns.

52 Department of CSE

We then loop through 9 rows of the table.

At the beginning of each row, we print the row number.

Then, we loop through 9 columns, and for each, we tab over to the

column and print the product of the row number and column number.

After the inner “for” loop (at the end of each iteration of the outer “for”

loop), we print a „\n‟ which causes the program to start the next line.

53 Department of CSE

*

for (I = 0; I <= 5; I++) {

for (J = 0; J < I; J++)

printf(“ “);

for (J = 0; J < (11 - 2 * I); J++)

printf(“*”);

printf(“\n”);

}

 Note 2 (sequential) inner loops

Example #3

Trace the nested loop given

printf(―Max N! to print: ―);

scanf(―%d‖,&N);

for (I = 1; I <= N; I++) {

fact = 1;

for (J = 2; J <= I; J++)

fact *= J;

printf(―%d! = %d\n‖,I,fact);

}

Tracing……...

Stmt N I J fact output

1 4

2 1

3 1

4 2

6 1! = 1

2 2

3 1

4 2

5 2

4 3

6 2! = 2

2 3

3 1

4 2

5 2

Stmt N I J fact output

4 3

5 6

4 4

6 3! = 6

2 4

3 1

4 2

5 2

4 3

5 6

4 4

5 24

4 5

6 4! = 24

2 5

Control of loop execution:

Break Statement

• A loop construct, whether while, or do-while, or a for loop
continues to iteratively execute until the loop condition
evaluates to false

• There may be situations where it may be necessary to exit from
a loop even before the loop condition is reevaluated
after an iteration

• The break statement is used to exit early from all loop
constructs (while, do-while, and for)

Example #1

int x, y;

while (1)

{

printf("Enter two numbers: ");

scanf("%d %d", &x, &y);

if (y == 0) break;

printf("%d /%d = %d\n", x, y, x/y);

}

58 Department of CSE

When you use "while(1)" (or any other non-zero constant), the loop should
continue until some special statement inside the loop stops it.

 Remember, when a non-zero constant is used as a boolean expression, it is
interpreted as true.

When the "break" statement is reached, the computer jumps to the first
statement after the "while" loop, regardless of whether or not the condition
(expression) being checked by the loop is true.

 The program goes into the loop no matter what and asks the user to enter the
two numbers at the start of each iteration of the loop.

When the user enters 0 as the second number, the loop is exited, and the
program ends.

59 Department of CSE

Break - terminates loop, execution continues with the first statement
following the loop- for and while loops

sum = 0;
for (k=1; k<=5; k++)
{
scanf(―%lf ‖,&x);
if (x > 10.0)

break;
sum +=x;

}
printf(―Sum = %f \n‖,sum);

sum = 0;
k=1;
while (k<=5)
{

scanf(―%lf ‖,&x);
if (x > 10.0)

break;
sum +=x;
k++;

}
printf(―Sum = %f \n‖,sum);

Example #2

• If you encounter a “break” statement in the middle of a nested loop, the

control of the program jumps to the first statement after the innermost loop

surrounding the “break” statement.

 For instance, let‟s say in the Example #2 of nested loops, you only want to

print out half of the multiplication table, that below the diagonal line from

the top left to the bottom right.

 There is no need to print the result of 2*7 if you are going to print the result

of 7*2 anyway!

61 Department of CSE

Break statement….

Multiplication table program revisited

62 Department of CSE

There is no need to print the result of 2*7 if you are going to print the result of 7*2 anyway!

 Can you can make this adjustment by adding one “if ” statement to our multiplication program:?

Multiplication table program revisited

int row, col;

printf("\t0\t1\t2\t3\t4\t5\t6\t7\t8\t9\n");

for (row = 0; row <= 9; row++)

{

printf("%d", row);

for (col = 0; col <= 9; col++)

{

printf("\t%d", row*col);

if (col == row)

break;

}

printf("\n");

}

63 Department of CSE

 Now, for each row, once the column equals the row, we skip

the rest of the inner “for” loop and jump to the line that

prints the newline character. We then move on to the next

row!

• The continue statement causes all subsequent instructions in the loop body
(coming after the continue statement) to be skipped

• Control passes back to the top of the loop where the loop condition is evaluated
again

 In case of a continue statement in a for loop construct, control passes to the
reinitialization part of the loop, after which the loop condition is evaluated again.

Control of loop execution:

Continue Statement

sum = 0;

for (k=1; k<=5; k++)

{

scanf(―%lf ‖,&x);

if (x > 10.0)

continue;
sum +=x;

}

printf(―Sum = %f \n‖,sum);

sum = 0;
k=1;
while (k<=5)
{

scanf(―%lf ‖,&x);
if (x > 10.0)

continue;
sum +=x;
k++;

}

printf(―Sum = %f \n‖,sum);

Continue forces next iteration of the loop, skipping any remaining
statements in the loop- for and while loops

Example #1

int x;

for (x = 1; x <= 20; x++)

{

if (x % 5 == 0)

continue;

printf(“%d\n”, x);

}

Example #2 The first thing to note here is the test for

divisibility by 5.

Remember that the "%" is the modulus

operator; it returns the remainder when the

first operand is divided by the second

operand.

„

If the remainder when "x" is divided by 5

is 0, then "x" is divisible by 5!

When x is not divisible by 5, the condition of the “if ” statement is false, so we reach the “printf ”

statement and print out the number.

When "x" is 5, 10, or 15, the condition of the “if ” statement is true, so we “continue”, or skip, to the

end of the current iteration of the “for” loop, still do the update “x++”, and start the next iteration of

the loop.

When "x" is 20, we skip to the end of the current iteration of the “for” loop, still do the update

“x++”, but now x will be 21, so the condition of the “for” loop is no longer met, and we end the loop.

int c;

printf(“Enter a character:\n(enter x to exit)\n”);

while {

c = getch();

if (c == „x ‟)

break;

}

printf(“Break the infinite while loop. Bye!\n”);

Enter a character:

(enter x to exit)

H

I

x

Break the infinite while loop. Bye!

Example #3

Rewrite the code using continue statement

for (I = 0; I < 100; I++)
{
if (!((I % 2) == 1))

printf(―%d is even‖,I);
}

for (I = 0; I < 100; I++)
{
if ((I % 2) == 1)

continue;
printf(―%d is even‖,I);

}

Infinite loops

for (; ;)
{

statement1;
statement2;

..

.
}

while {
statement1;
statement2;

..

.
}

Example #1

 Now consider the following silly program:

while (1)

{

printf("Hello World!\n");

}

 It prints "Hello Wold!" forever!

This is called an infinite loop. Here, we created one on purpose, but normally,

they are created by accident.

70 Department of CSE

 What do you do when you are caught in an infinite loop?

You press Ctrl-C on your keyboard.

Pressing Ctrl-C will halt the execution of your C

program!

 What happens if you use "while(0)" in your program?

The loop is skipped no matter what. It is useless, but valid.

71 Department of CSE

Here are five ways to exit a loop:

The condition the loop depends on is not met at the time of

the check.

A "break" statement is encountered.

A statement that ends the current function, such as

"return", is encountered.

The program crashes.

The user presses Ctrl-C.
72 Department of CSE

Loops…..

73 Department of CSE

Read exactly 100 blood pressures from a file.

Read all the blood pressures from a file no matter how

many are there.

Read blood pressures until a dangerously high BP (200 or

more) is read.

Keep reading until a special (impossible) value is read.

Event controlled loops

74 Department of CSE

• Sentinel controlled Keep processing data until a special value
which is not a possible data value is entered to indicate that
processing should stop

• End-of-file controlled Keep processing data as long as there is
more data in the file (you will see it in UNIT 2: files)

• Flag controlled Keep processing data until the value of a flag
changes in the loop body

 read until input ends

 read until a number encountered

 search through data until item found

 Sentinel is negative blood pressure.

int thisBP;

int total;

int count;

count = 1;

total = 0;

scanf(“%d”, &thisBP);

while (thisBP > 0) // Test expression

{

total = total + thisBP;

count++; // Update

}

printf(“The total = %d”, total);

Example #1

76 Department of CSE

The value -999 is sometimes referred to as a sentinel value

The value serves as the ―guardian‖ for the termination of the loop

Often a good idea to make the sentinel a constant

#define STOPNUMBER -999

while (number != STOPNUMBER)

...

Example #2

Example#3

total = 0;

done = 0; /* done is set to 0 state */

do {

scanf(―%d‖,&num);

if (num < 0) done = 1; /* done 1 */

} while ((num != 0) && (!done));

77 Department of CSE

done is the flag, it controls the looping

Loop Testing and Debugging

 Test data should test all sections of the program

 Beware of infinite loops -- the program doesn‘t stop

 Check loop termination condition

 Use algorithm walk-through to verify that appropriate conditions occur in

the right places

 Trace execution of loop by hand with code walk-through

 Use a debugger (if available) to run program in ―slow motion‖ or use debug

output statements

Let us try………..

79 Department of CSE

int i, sum;

sum = 0;

for (i=1; i<8; i++)

{

if ((i==3) || (i==5))

continue;

sum += i;

}

printf(―The sum of 1, 2, 4, 6, and 7 is: %d\n‖, sum);

}

Output??????????

The sum of 1, 2, 4, 6, and 7 is: 20

i = n;
while (i--)

statement;

If you use this method,

make sure that n is greater

than zero,

Or

make the test i-- > 0

while (a = 6)
statement

6 is assigned to a

– the expression a = 6 is tested —

it has the value 6 which is non-zero

and

therefore true

– the loop will be executed forever

as a = 6 is always true

for(i=5; i<10; i++)

{

printf(―AAA %d \n‖, i);

if (i % 2==0) continue;

pritntf(―BBB %d \n‖, i);

}

i=5;

while(i<10) {

printf(―AAA %d \n‖, i);

if (i % 2==0) {

i++;

continue;

}

pritntf(―BBB %d \n‖, i);

i++;

}

Write this code using while construct

Write a program to compute the following

n

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1
2ln

Enter n
ln2=0;
for(i=1; i<=n; i++)

if (i % 2 == 0)
ln2 = ln2 - 1.0 / i;

else
ln2 = ln2 + 1.0 / i;

m

m

i

i
xxxxxxx

43210

0

Enter x and m

total=0;

for(i=0; i<=m; i++)

total = total + pow(x, i);

print total

Enter x and m

total=0; sofarx=1;

for(i=0; i<=m; i++) {

total = total +sofarx;

sofarx = sofarx * x;

}

print total

Write a program for the given summation

Find the maximum score using for loop

85 Department of CSE

printf(―Number of students: ―);

scanf(―%d‖,&NumStudents);

for (I = 0; I < NumStudents; I++) {

printf(―Enter student score %d: ―);

scanf(―%d‖,&score);

if (score > max)

max = score;

}

/* max is highest score entered */

What is the o/p?

Try it Yourself…..

Home work exercises

 Suppose a man (say, A) stands at (0, 0) and waits for

user to give him the direction and distance to go.

 User may enter N E W S for north, east, west, south,

and any value for distance When user enters 0 as

direction, stop and print out the location where the

man stopped.

Write C program for the following

float x=0, y=0;

char direction;

float distance;

while (1) {

printf("Please input the direction as N,S,E,W (0 to exit): ");

scanf("%c", &direction); fflush(stdin);

if (direction=='0'){ /*stop input, get out of the loop */

break;

}

if (direction!='N' && direction!='S' && direction!='E' &&

direction!='W') {

printf("Invalid direction, re-enter \n");

continue;

}

printf("Please input the mile in %c direction: ", direction);

scanf ("%f", &distance); fflush(stdin);

if (direction == 'N'){ /*in north, compute the y*/

y = y + distance;

} else if (direction == 'E'){ /*in east, compute the x*/

x = x + distance;

} else if (direction == 'W'){ /*in west, compute the x*/

x= x - distance;

} else if (direction == 'S'){ /*in south, compute the y*/

y = y- distance;

}

}

printf("\nCurrent position of A: (%4.2f, %4.2f)\n", x, y);

/* output A's location */

The program should reads the value of x and n

from the keyboard and then approximately computes the

value of ex using the following formula:

Then compare your approximate result to the one returned

by exp(x) in C library, and print out whether your

approximation is higher or lower.

!!3!2!1
1

32

n

xxxx
e

n

x

Write C program to compute ex

Size: 5

**

*

Size: 3

**

*

Size: 0

Write C program to print the pattern after

getting the size from the user

do {

printf(“Size: “);

scanf(“%d”,&Size);

if (Size > 0) {

for (I = Size; I >= 1; I--) {

for (J = 1; J <= I; J++)

printf(―*‖);

printf(―\n‖);

}

}

} while (Size > 0);

Summary

94 Department of CSE

 Introduction to iterative construct

 Counter controlled loops

While loop

Do-while loop

For loop

 Nesting of loops

 Control of loop execution

 Infinite loops

 Event controlled loops

Sentinel controlled

Flag controlled

