
1.3b Type Conversion

Type Conversion

 When we write expressions involved data that involves two

different data types , such as multiplying an integer and floating –

point number, we need to perform a type conversion….

 Two type of conversions mainly

 Implicit type conversion

 Explicit type conversion

Implicit Type Conversion

 When the types of the two operands in a binary expression are

different,C automatically converts one type to another which is

known as Implicit Type Conversion.

 Some of the simple conversions are :

 Conversion Rank

 Conversions in Assignment Expressions

 Promotion

 Demotion

 Conversion in other Binary Expressions

Conversion Rank
 In C , we assign a rank to the integral and floating point

arithmetic types

Boolean

1. Bool

Character

2. Char

Integer

6.long long

5.long

4. int

3. short

Real

9.long double

10.double

11.float
Conversion Rank

Conversions in Assignment

Expressions

 A simple assignment involves an assignment operator and

two operands

 Depending on the difference in the rank, C tries to either

promote or demote the right expression to make it the same

rank as the left variable.

 Promotion occurs if the right expression has lower rank

 Demotion occurs if the right expression has a higher rank

Promotion

 The rank of the left expression is elevated to the rank of the left

variable

 The value of the expression is the value of the right expression

after the promotion

bool b = true;

char c = ‘A’;

int i = 1234;

long double d = 3458.0004

c = b; //Value of c is SOH

i = c; //Value of i is 65

d = b; //Value of d is 1.0

d = i; //Value of d is 1234.0

Demotion
 If the size of the variable at the left side can accommodate the value

of the expression, there is no problem

 An integral or real value can be assigned to a Boolean Type.

 If the value of the expression on the right is zero, false(0) is stored. If
the result is not zero, either positive or negative, true (1) is stored.

 When an integer or a real is assigned to a variable of type character,
the least significant byte of the number is converted to a character
and stored.

 When a real is stored in an integer, the fraction part is dropped

 If the integral part is larger than the maximum value that can be
stored, the results are invalid and unpredictable

 When to store a long double in a variable of type float, the results are
valid if the value fits or invalid if it is too large

Example for demotion
bool b = false;

char c =‘A’;

short s = 78;

int j = INT_MAX;

int k = 65;

…

b = c ; //Value of b is 1 (true)

s = j; // value of s is unpredictable

c = k + 1; // demotion: value of c is ‘B’

Conversion with other Binary Expressions

1. The operand with the highest rank is determined using the highest

ranking mentioned above

2. The low-ranked operand is promoted to the rank defined in step 1.

After the promotion, both expressions have the same rank

3. The operation is performed with the expression value having the

type of the promoted rank
bool b = true;

char c =‘A’;

int i = 3650;

short s = 78;

long double d= 3458.0004;

b + c ; //b promoted ; result is ‘B’ (‘A’+1)

i * s; // the result is an int

d * c; //result is long double

Explicit Type Conversion
 It is not done by compiler, instead the data from one to another is

converted using explicit type conversion

 Explicit type conversion uses the unary cast operator

 To cast data from one type to another, we specify the new type in

parentheses before the value we want converted

 To convert an integer a to a float: (float) a

 The value stored is still of type integer, but the value of the

expression is promoted to float

 average = (float) totalscores / numscores;

 //there is an explicit conversion of totalscores to float and then an

implicit conversion of numscores so that it will match

 (float) (a/10) will give the result 0.0, so need to be written as

(float) a / 10

Example :Cast operator
 #include <stdio.h>

main()

{

int sum = 17,

count = 5;

double mean;

mean = (double) sum / count;

printf("Value of mean : %f\n", mean);

}

When the above code is compiled and executed, it produces the
following result −Value of mean : 3.400000

Thankyou!!!!

