
1.3a Expressions

Expressions
 An Expression is a sequence of operands and operators that

reduces to a single value.

 An operator is a syntactical token that requires an action be taken

 An operand is an object on which an operation is performed; it

receives an operator‟s action.

 A simple expression contains only one operator.

 E.g.

 2+5 is a simple expression which gives 7

 -a is a simple expression

 A complex expression – to evaluate we need to reduce it to a series

of simple expressions.

 E.g.

 2 + 5 * 7 =>2+ 35 => 37

Expression Categories

PrefixPrimary Postfix Unary Binary Ternary

Expression

Categories

Primary Expressions

 Most elementary type of expression

 A primary expression consists of only one operand with no

operator

 Operands can be name, constant, a parenthesized expression

 Primary expression is evaluated first in case of precedence

 Name: is any identifier for a variable, function or any other object

in the language. E.g.: a b12 int_max SIZE

 Literal Constants: It is a piece of data whose value can‟t be

changed during the execution of the program

 E.g.: 5 123.98 „A‟ “Welcome”

 Parenthetical Expressions: Any value enclosed in parenthesis

may be reducible to a single value

 E.g.: (2* 3+4) (a=23 + b * 6)

Postfix Expressions

 Postfix expression consists of one operand followed by one

operator

 Postfix Increment: value is increased by 1.Thus a++ results

in the variable a being increased by 1.The effect is the same

as a=a+1.

 The difference is that the value of the postfix increment

expression is determined before the variable is increased

Operand Operator

a++ has the same effect as a=a+1

x++, where ++ appears after its operand, post-increment operator
x--, the decrement operator is called the post-decrement operator

Postfix Increment and decrement

 Postfix increment and decrement has a value and a side effect

 For instance, if a variable contains 4 before the expression is

evaluated, the value of the expression is evaluated,i.e, the value of

expression a++ is 4.As a result of evaluating the expression and it‟s

side effect, a contains 5

 Postfix decrement (a--), the value of the expression is the value of a

before the decrement; the side effect is the variable is decremented

by 1

y = x++;

y is assigned the original value of x first,

then x is increased by 1.

y = x--; the assignment of y to the value of x takes place first,

then x is decremented.

Prefix Expressions

 Two prefix operators : Prefix increment and Prefix decrement

 The operand of a prefix expression must be a variable

Operator
Operand/

Variable

++ a has the same effect as a =a+1

++x , where ++ appears before its operand, pre-increment operator
The operator first adds 1 to x, and then yields the new value of x

--x;, the pre-decrement operator first subtracts 1 from x and
then yields the new value of x

Example

int w, x, y, z, result;
w = x = y = z = 1;
printf(“ w = %d, x = %d, y = %d, z = %d,\n”, w, x, y, z);

result = ++w;
printf(“++w evaluates to %d , w is now %d\n”, result, w);

result = x++;
printf(“x++ evaluates to %d , x is now %d\n”, result, x);

Example

Given w = 1, x = 1, y = 1, and z = 1,
++w evaluates to 2 and w is now 2
x++ evaluates to 1 and x is now 2

Unary Expression

 Consist of one operator and one operand

 Like the prefix expression, the operator comes before the

operand

 But unlike the prefix expression, unary expression can have

an expression or variable as the operand

Operator Operand

sizeof

 Gives the size in bytes of a type or primary expression

 By specifying the size of an object during execution, we make

our program more portable with other hardware

 sizeof -345.23

 sizeof x

sizeof (int)

Unary Plus /Minus

 If the expression‟s value is negative, it remains negative

 If the expression‟s value is positive, it remains positive

Expression Contents of a before and

after expression

Expression Value

+a 3 +3

-a 3 -3

+a -5 -5

-a -5 +5

Cast Operator

 Cast operator converts one expression type to another

(type_name) expression

 To convert an integer to a real number,

float(x)

 Only the expression value is changed , the integer variable x is

unchanged

Example :Cast operator

 #include <stdio.h>

main()

{

int sum = 17,

count = 5;

double mean;

mean = (double) sum / count;

printf("Value of mean : %f\n", mean);

}

When the above code is compiled and executed, it

produces the following result −Value of mean :

3.400000

BinaryExpressions

 Binary expressions are formed by an operand-operator-

operand combination

 Any two numbers added ,subtracted ,multiplied or divided

are usually formed in algebraic notation, which is a binary

expression

 a + b

 c - d

OperatorOperand Operand

Multiplicative Expressions

 Which take its name from the first opearator,include the multiply,

divide and modulus operator

 These operators have the highest priority among the binary

operators and therefore evaluated first among them

 Result of a multiply operator (*) is the product of the two

operands

 Operands can be any arithmetic type

 10 * 3 //evaluates to 30

 true * 4 //evaluates to 4

 „A‟ * 2 //evaluates to 130

 22.3 * 2 //evaluates to 44.6

 (2 + 3 * I) * (1 + 2 * I) //evaluates to -4 + 7 * I

Divide operator – Multiplicative Expressions

 Result of a divide operator (/) depends on the type of the

operands.

 If one or both operands is a floating – point type, the result is a

floating point quotient

 If both operands are integral type, the result is the integral part

of the quotient

 10 / 3 //evaluates to 3

 true / 4 //evaluates to 0

 „A‟ / 2 //evaluates to 32

 22.3 / 2 // //evaluates to 11.15

Modulus Operator (%) – Multiplicative Expressions

 This operator divides the first operator by second operator and

returns the remainder rather than quotient

 Both operands must be integral type and the operator returns the

remainder as an integer type

 10 % 3 //evaluates to 1

 true % 4 //evaluates to 1

 „A‟ % 2 //evaluates to 5

 22.3 % 2 // Error: Modulo cannot be Floating Point

Both Operands of the modulo operator (%) must be integral types

Division and Modulus Operator

 The value of an expression with the division operator is the

quotient and the value of the expression with the modulus

operator is remainder

 3 / 5 //evaluates to 0

 3 % 5 //evaluates to 3

 If the integral operand is smaller than the second integral

operand, the result of division is zero and the result of the

modulo operator is the first operand

 3 / 7 //evaluates to 0

 3 % 7 //evaluates to 3

Additive Expressions

 Depending on the operator used, the second operand is added or

subtracted from the first operand

 The operand in an additive expression can be any arithmetic types

(integral or floating –point)

 Additive operators have lower precedence than multiplicative

operators

 3 + 7 //evaluates to 10

 3 – 7 //evaluates to -4

Assignment Expressions

 Assignment Operator evaluates the operand on the right side of

the operator (=) and places it‟s value in the variable on the left.

 The assignment expression has a value and a side effect

 The value of the total expression is the value of the expression on

the right of the assignment operator (=)

 The side effect places the expression value in the variable on the

left of the assignment operator

 There are two forms of assignment : simple and compound

The left operand in an assignment expression must be a single variable

Simple Assignment

 Found in algebraic expressions

 a = 5

 b = x + 1

 i = i +1

 Left variable must be able to receive it, that is , it must be a

variable and not a constant

 If the left operand cannot receive a value and we assign one

to it, we get a compile error

Compound Assignment

 A compound assignment requires that the left operand be

repeated as part of the right expression

 Five compound assignment operators are *= ,/= ,%= ,+= ,-=

 To evaluate the compound assignment, first change it to a simple

assignment, then perform the operation to determine the value of

the expression

Compound Expression Equivalent Simple Expression

x *= expression x = x * expression

x /= expression x = x / expression

x %= expression x = x % expression

x += expression x = x + expression

x -= expression x = x - expression

Compound Expression Evaluation

 x *= y + 3

is evaluated as

x = x * (y + 3)

which, given the values x is 10 and y is 5 , evaluates to 80.

Short hand Assignment Operators

= Assignment
* = Multiply and assign
/ = Divide and assign
% = Modulo and assign
+ = Add and assign
- = Subtract and assign

<< = Bitwise left shift and assign
>> = Bitwise right shift and assign
& = Bitwise AND and assign
^ = Bitwise XOR and assign
| = Bitwise OR and assign

= Assignment

The left operand is the variable to be assigned

The right hand side is evaluated and its type converted to the

type of the variable on the left and

stored in the variable

Assign multiple variables on a single line:This is

possible because , assignment operators return the value that was

stored in the variable

a = c = 5;

printf("a = %dn", a);

a <<= c - 3;

printf("a = %dn", a);

a &= c;

printf("a = %dn", a);

c = 5 is done first,

then the value of c (which is now 5)

is assigned to a

a variable is 5 (101 in binary),

which when left shifted by 2 becomes

20 (10100 in binary)

a (20 decimal, 10100 binary)

bitwise and (keeps only the 1 bits that

are common to both numbers)

with c (5 decimal, 101 binary) results

in 4 (100 binary),

which is then stored in a.

int a = 8.3;

float b = 1.343f;

int c;

printf("a = %d, b = %fn", a, b);

a += 2;
b *= a;

printf("a = %d, b = %fn", a, b);

a %= 4;
b -= 0.43;

printf("a = %d, b = %fn", a, b);

a = 8, b = 1.343000

a = 10, b = 13.430000

a = 2, b = 13.000000

int i;

i = 10; /* Assignment */ printf("i = 10 : %d\n",i);

i++; /* i = i + 1 */ printf ("i++ : %d\n",i);

i += 5; /* i = i + 5 */ printf ("i += 5 : %d\n",i);

i--; /* i = i = 1 */ printf ("i-- : %d\n",i);

i -= 2; /* i = i - 2 */ printf ("i -= 2 : %d\n",i);

i *= 5; /* i = i * 5 */ printf ("i *= 5 :%d\n",i);

i /= 2; /* i = i / 2 */ printf ("i /= 2 : %d\n",i);

i %= 3; /* i = i % 3 */ printf ("i %= 3 :
%d\n",i);

Assignment Operators

i = 10 : 10 i++ : 11 i += 5 : 16

i-- : 15 i -= 2 : 13 i *= 5 :65

i /= 2 : 32 i %= 3 : 2

Associativity
 Associativity can be from left to right or right to left.

 Left to right associativity evaluates the expression by starting on

the left and moving to the right

 Right to left associativity evaluates the expression by starting on

the right and moving to the left

 Associativity is used only when the operators have same

precedence.

Left to Right Associativity

 (* / %) all have the same precedence

 3 * 8 / 4 % 4 * 5

 Associativity determines how the sub expressions are grouped

together.Thier associativity is from left to right

Right to Left Associativity

 E.g.- a += b *= c -= 5

 here more than one assignment operator occurs

 (a += (b *= (c -= 5))) which may be expanded to

 (a = a+ (b= b* (c =c-5)))

 (a = 3 + (b = (5 * (c = 8 – 5)))

 The value of complete expression is 18

 If we need to do a simple initializing then

 a=b=c=d=0

Example

If a programmer wishes to perform:

z = a + b / c;

it may be interpreted as ???????

z=(a+b)/c or z=a+(b/c)

if a=3,b=6,c=2 then z=4.5 or z=6

In arithmetic expressions scanning is always done from left to right

Priority of operations :

First Parenthesis or brackets()

Second Multiplication & Division

Third Addition & Subtraction

Fourth Assignment i.e, =

Now what is the value of Z? 6

 An expression always

reduces to a single value

Associativity: left-to-right

Parentheses (function call) ()

Brackets (array subscript) []

Member selection via object name .

Member selection via pointer ->

Postfix increment/decrement ++ --

Associativity: right-to-left

Prefix increment/decrement ++ --
Unary plus/minus + -
Logical negation/bitwise complement ! ~
Cast (change type) (type)
Dereference *
Address &
Determine size in bytes sizeof

Associativity: left-to-right

* / % + -

<< >> < <= > >= == !=

& ^ | && ||

,

Associativity: right-to-left

?:

=

+= -=

*= /=

%= &=

^= |=

<<= >>=

Example
 5 + 3 * 2 is calculated as ????????

5 + (3 * 2), giving 11,
and not as (5 + 3) * 2, giving 16 :has higher "precedence" than
+ so the multiplication must be performed first

PRECEDENCE/PRIORITY

 8 - 3 - 2 is calculated as ????????
(8 - 3) - 2, giving 3,
and not as 8 - (3 - 2), giving 7:

- is "left associative", so the left subtraction must be performed
first
ASSOCIATIVITY

Example
result=10+20%5-15*5/2

1. % is evaluated first
The remainder is 0 when 5 divides 20

2. result=10+0-15*5/2
Multiplication is performed
15*5=75

3. result=10+0-75/2
Division is performed

75/2 results in 37 instead of 37.5
4. result=10+0-37

Addition is performed because it comes before minus

5. result= 10 - 37
Finally subtraction is performed
and –27 is stored in the variable result

i= 2*3/4+4/4+8-2+5/8

i is ?????????????

i=6/4+4+8-2+5/8

i=1+4/4+8-2+5/8

i=1+1+8-2+5/8

i=1+1+8-2+0

i=2+8-2+0

i=10-2+0

i=8+0

i=8

Example

Add parentheses to the following expression to make the order of

evaluation more clear:

year % 4 == 0 && year % 100 != 0 || year % 400 == 0

((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0)

Example

Precedence and Associativity

 Precedence is used to determine the order in which different

operators in a complex expression are evaluated.

 Associativity is used to determine the order in which operators

with the same precedence are evaluated in a complex expression

 Associativity determines how operators of same preference are

group together to form complex expression

 Precedence is applied before associativity to determine the order

in which expressions are evalaued,Associativity is then applied, if

necessary

Hierarchy of operations

The preference in which arithmetic operations are performed in an

arithmetic expression is called as Hierarchy of operations

Operator Precedence Chart- Highest to Lowest
Operators Type

! Logical NOT

* / % Arithmetic and modulus

+ - Arithmetic

== != Relational

&& Logical AND

|| Logical OR

= Assignment

Operators higher in the chart have a higher precedence,meaning that the
C compiler evaluates them first.
Operators on the same line in the chart have the same precedence.

Examples
 E.g.1:- 2+ 3 * 4

 This is actually 2 binary expressions with one addition and one

Multiplication operator

 Multiplication is done first , followed by addition .The value of the

complete expression is 14

 (2 + (3 * 4)) 14

 E.g.2:- -b++

 First operation is unary minus followed by postfix increment where

postfix increment has the highest precedence and is evaluated first

followed by unary minus

 (- (b++))

 Assuming the value of b is 5 initially, the expression is evaluated to -5.

Side Effects
 A side Effect is an action that results from the evaluation of an

expression.

 C first evaluates the expression on the right of the assignment

operator and then places the value in the left variable. Changing

the value of the left variable is a side effect.

 x = 4;

 Expression has 3 parts:

 first ,on the right of the assignment operator is a primary expression

that has the value 4

 second ,the whole expression(x=4) has a value of 4

 third , as a side effect, x receives the value 4

Example

 x = x + 4

 Assuming that x has the initial value of 3, the value of the

expression on the right of the assignment operator has a value

7.The whole expression also has the value of 7.And as a side

effect,x receives the value of 7

 int x =3;

 printf(“step 1–Value of x: %d\n”, x)

 printf((“step 2 -Value of x =x + 4: %d\n”,x=x+4);

 printf((“step 2 -Value of x now:%d\n”,x);

Evaluating Expressions
 Divided into Expression with side effects and Expressions without

side effects

 Expressions without side effects:

 The first expression has no side effects, so the values of all of it‟s

variables are unchanged

 a * 4 + b / 2 – c * b

 Assume that all the variables are

3 4 5

a b c

Evaluation of Expressions without

side effects

1. Replace the variables by their values

3 * 4 + 4 / 2 – 5 * 4

2. Evaluate the highest precedence operators and replace them with

the resulting value

(3 * 4) + (4/2) –(5* 4)

12 + 2 – 20

3. Repeat step 2 until the result is a single value

Expression with Side Effects
--a * (3 + b) / 2 – c++ * b

1. Calculate the value of the parenthesized expression (3 + b) first

--a * 7 / 2 – c++ * b

2. Evaluate the postfix expression (c++) next

--a * 7 / 2 – 5 * b

3. Evaluate the prefix expression (--a)

2 * 7 / 2 – 5 * b

4. The multiply and division are now evaluated using their associativity

rule, left to right

14 /2 -5 * b -> 7 – 5 * 4 -> 7 -20

5. The last step is to evaluate the subtraction. The final expression value

is -13 7-20 -> -13

After the side effects:
2 4 6

ca b

Remember….

In C,if a single variable is

modified more than once

in an expression, the result

is undefined

Statements

 A statement causes an action to be

performed by the program

 It translates directly into one or

more executable computer

instructions.

 Most statements need a semicolon

at the end

 Types of statements are as follows:

Statement

Goto

Continue

Break

Null

iterative

switch

Labeled

Conditional

Compound

Return

Expression

Null statement

 It is just a semicolon (;)

 It can appear wherever a statement is expected.

 Nothing happens when a null statement is executed.

;

//null statement

 for (i = 0; i < 10; line[i++] = 0)

;

Expression Statement

 An expression is turned into a statement by placing a

semicolon(;) after it

 expression; //expression statement

 a = 2;

The effect of the expression statement is to store the value 2 in

the variable a. The value of the expression is 2.After the value

has been stored, the expression is terminated and the value is

discarded. continues with the next statement.

Expression Statement

 a = b = 3;

The statement actually has two expressions.

a = (b =3)

The (b =3) has a side effect of assigning the value 3 to the

variable b.The value of this expression is 3.Since the

expression is terminated by the semicolon, it‟s value 3, is

discarded. The effect of the expression statement, is that 3

has been stored in both a and b.

Return Statement
 A return statement terminates a function.

 All functions, including main, must have a return statement.

 When there is no statement at the end of the function, the

system inserts one with a void return value.

 return statement ; \\return statement

 return statement can return a value to the calling function

 In case of main, it returns a value to the operating system rather

than to another function

 A return value of 0 tells the operating systems that the program

executed successfully

Compound statements
 A compound statement is a unit of code consisting of zero or

more statements. It is known as a block.

 The compound statement allows a group of statements to become

one single entity

 All C functions contain a compound statement known as a

function body.

Compound Statement
 A compound statement consists of an opening brace, an optional

declaration and definition section and an optional statement

section, followed by a closing brace

 Compound statement does not need a semicolon.

 Both opening and closing brace acts as the delimiters

 If we put a semicolon, compiler thinks that it is an extra null

statement.

Every declaration in C is terminated by a semicolon

Most statements in C are terminated by a semicolon

Any queries????

