
1.2 Data Input and Output

The Standard C Environment
 The C environment assumes the keyboard to be the

standard input device referred to as stdin

 The VDU is assumed to be the standard output device
referred to as stdout

 The VDU also serves as the standard error device, and
is referred to as stderr

Input/Output Functions
 C supports Input/Output operations through functions

written in C, that are part of the standard C library

 These input/output functions may be incorporated into
any program by a programmer

 Any input or output operation happens as a stream of
characters

 The standard I/O functions are available for character-
based I/O, or for string-based I/O

 The standard I/O functions are buffered,
i.e., each device has an associated buffer through
which any input or output operation takes place

 After an input operation from the standard input
device has occurred, care must be taken to clear
the standard input buffer
Otherwise, the previous contents of the buffer may
interfere with subsequent input

 After an output operation, the buffer need not be
cleared since subsequent output data will flush the
previous buffer contents

Input/Output Functions

INPUT / OUTPUT FUNCTIONS

 Should include the standard I/O header file #include
<stdio.h> for input output operations

Unformatted I/O

 getch() is used to accept a character from standard
input
By default, it accepts characters from the keyboard,
and returns the character

 putch() displays the character on to standard output
It takes one argument, namely, the character to be output

 fflush() clears the buffer associated with the
particular device

Character-Based I/O

Example

#include <conio.h>

#include <stdio.h>

main()

{

char ch;

ch = getch();

fflush(stdin);

putch(ch);

}

getchar() and putchar()

 A macro call is similar to a function call. It consists of a
macro name followed by a comma-separated argument
list enclosed in a pair of parentheses.

 The macro getchar() by default accepts a character from
the keyboard and returns the character.

 The macro putchar() is used to display the character on to
standard output.

It takes the character to be output as an argument.

ch = getchar();

fflush(stdin);

putchar(ch);

Example

String-Based I/O
 gets() accepts as a parameter, a string variable, or

a string literal (enclosed in double quotes) from
the keyboard.

 puts() accepts a string variable, or a string literal
to be displayed to standard output.

After displaying the output, the puts() function causes

the cursor to be positioned at the beginning of the next
line.

Example

#include <stdio.h>

#include <conio.h>

main()

{

char str[11];

puts("Enter a string of maximum 10 characters");

gets(str);

fflush(stdin);

puts(str);

}

 The functions printf() and scanf() perform formatted
output and input—they can read and write data in
various formats that are under your control

 printf() function writes data to the console

 scanf() function, its complement, reads data from the
keyboard

 Both functions can operate on any of the built-in data
types, plus null-terminated character strings

Formatted Console I/O

Keyboard

Monitor

Standard Input File

Standard Output File

Memory

scanf(…)

printf(…)

Formatted Input and Output

 Input
scanf(“%d”,&a); -Gets an integer value from the user

and stores it under the name a

scanf(“%d %d”, &x, &y); - ???

 Output
printf(“%d”,a); - Prints the value present in variable

a on the screen

printf(“Enter x y : ”); - ????

Formatted Output - printf()

234

Monitor

Data destination

printf(…)234
2 3 4

Text Stream

Integer

Program

printf(control string, arg1, arg2, ..argn);

printf() function returns ?????

the number of characters written or a negative value if an error occurs

#include <stdio.h>
main()
{

int i = 0;
i=printf("abcde\n");
printf("total characters printed %d\n",i);

}

Conversion Specification

% Flag Minimum
Width

Precision Size Code

Examples…

 printf(“%d%c%f”, 23, ’z’, 4.1);

23z4.100000

 printf(“%d %c %f”, 23, ’z’, 4.1);

23 z 4.100000

printf() in brief…

Displays information on screen

Returns the number of characters printed

Displays the text you put inside the double quotes

Requires the backslash character - an escape sequence - to

Display some special characters

Displays values of variables by using the % conversion
character

Output of -145

Output of 157.8926

int sum = 65;
double average = 12.368;
char ch = ‘b’;

Show the output line generated by the following :

%2hd Short integer-2 print positions

%4d Integer-4 print positions

%7.2 Float -7 print positions nnnn.dd

%10.3Lf Long double 10 positions nnnnnn.dd

Solution:

Sum = 65; Average = 12.4

Sum = 65

Average = 12.3680

Sum and Average

65 12.4

Character is b; Sum is A

Character is 98; Sum is 65

Flags with printf()

- Trailing zeroes

+ sign, either + or – will preceed

0 leading zeros

#0 octal data items to be preceeded by 0

#x hexa data items to be preceeded by 0x

#f decimal point to be present

#e decimal point to be present

#g decimal point to be present, prevents truncation
of trailing zeroes

Escape sequences
 You can represent any member of the execution character

set by an escape sequence

 These sequences are primarily used to put nonprintable
characters in character and string literals

 To put such characters as tab, carriage return,

and backspace into an output stream

C includes the backslash character - an escape sequence - to

display some special characters

The program outputs a new line and a tab
and then prints the string This is a test.

Tab ‘\t’ and NewLine ‘\n’ Character

 printf(“%d\t%c \t%5.1f\n”, 23, ’z’, 14.2);

printf(“%d\t%c \t%5.1f\n”, 107, ’A’, 53.6)

printf(“%d\t%c \t%5.1f\n”, 1754, ’F’, 122.0);

printf(“%d\t%c \t%5.1f\n”, 3, ’P’, 0.1);

23 z 14.2
107 A 53.6

1754 F 122.0

3 P 0.1

 printf(“The number %d is my favorite number.”, 23);

The number 23 is my favorite number.

Examples
 Another common escape sequence is \", which

represents the " character:

printf("\"Hello!\"");

"Hello!"

To print a single \ character, put two \ characters in
the string:

printf("\\");

\

Things to Remember!!!
 Compilers aren’t required to check that the number of

conversion specifications in a format string matches the
number of output items.

 printf("%d %d\n", i);

Too many conversion specifications

 printf("%d\n", i, j);

Too few conversion specifications

 printf("%f %d\n", i, x);

/*** WRONG ***/

Time to Test Your C Skills
 printf(“%d %d %d\n”, 44, 55)

44 55 0

//Three conversion specifications but only two
values

 printf(“%d %d\n”, 44, 55, 66)

44 55

//printf ignores the third value

Formatting Input - scanf()

234.2 scanf(…)

‘2’ ‘3’ ‘4’
‘.’

‘2’

 scanf() is the general -purpose console input routine. It

can read all the built-in data types and automatically

convert numbers into the proper internal format.
•scanf() returns the number of data items successfully
assigned a value.
If an error occurs, it returns EOF.
•The control_string determines how values are read into
the variables pointed to in the argument list.

scanf(control string, arg1, arg2, …..argn);

% Flag Maximum width Size Code

There is no precision, if found(it goes to error state)

You Must Pass scanf() ADDRESSES

 All the variables used to receive values through scanf()
must be passed by their addresses.

 This means that all arguments must be pointers.

 To read an integer into the variable count:
scanf("%d", &count);

 To read a string into the character array str:
scanf("%s", str);

In this case, str is already a pointer and need not be
preceded by the & operator.

Example

Sample input:

 1 -20 .3 -4.0e3

/* scanf will assign 1, –20, 0.3, and –4000.0 to i, j, x,
and y, respectively */

int i, j;

float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

Try specifying field width with scanf……….

int a, b, c;

scanf(“%3d %3d %3d”, &a, &b. &c);

Inputs:

1 2 3

123 456 789

123456789

1234 5678 9

Example

Assignment suppression character: “*d”

scanf(“%d %*d %d”, &a, &b, &c);

I/p:

2 3 4

2 is read and assigned to a

3 is read and but not assigned to b

4 is read and assigned to c

EOF

 White spaces, width specifications, EOF
,errors(Invalid Characters),stops the scanf function.

 In ASCII, whitespace characters are space (' ')

 If the user signals that there is no more input by
keying EOF,then scanf terminates the input process

 If scanf encounters an invalid character when it is
trying to convert the input to the stored data type, it
stops

 Finding a non-numeric character when it is trying to
read a number

 As it searches for a number, scanf ignores white-space

(space, horizontal and vertical tab, form-feed, and new-
line)

A call of scanf that reads four numbers:

scanf("%d%d%f%f", &i, &j, &x, &y);

 The numbers can be on one line or spread over several lines:

1

-20 .3

-4.0e3

scanf sees a stream of characters (\n represents new-line):

 ••1\n-20•••.3\n•••-4.0e3\n

 ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

 scanf “peeks” at the final new-line without reading it.

EOF

More Examples

 How do you call using scanf()?

scanf("%d%d%f%f", &i, &j, &x, &y);

 scanf would process the new input AS FOLLOWS:

 – %d. Stores 1 into i and puts the - character back.

 – %d. Stores –20 into j and puts the . character back.

 – %f. Stores 0.3 into x and puts the - character back.

 – %f. Stores –4.0 × 103 into y and puts the new-line
character back.

1-20.3-4.0e3\n

Time to test your C Skills

 int a = 0;

scanf(“%d”, a);

printf(“%d\n”, a);

input: 234

output: 0

Why Output is 0?

/* & is missing in scanf(…, &a);

What is printed is the original contents of the variable, in
this case 0*/

Can you Guess the Output???

OUTPUT

Thankyou!!!!!

