1.2 Data Input and Output

The Standard C Environment

e The C environment assumes the keyboard to be the
standard input device referred to as stdin

e The VDU is assumed to be the standard output device
referred to as stdout

e The VDU also serves as the standard error device, and
is referred to as stderr

Input/Output Functions

o C supports Input/Output operations through functions
written in C, that are part of the standard C library

* These input/output functions may be incorporated into
any program by a programmer

* Any input or output operation happens as a stream of
characters

e The standard I/O functions are available for character-
based I/O, or for string-based |/O

Input/Output Functions

e The standard I/O functions are buffered,

i.e., each device has an associated buffer through
which any input or output operation takes place

e After an input operation from the standard input
device has occurred, care must be taken to clear
the standard input buffer

Otherwise, the previous contents of the buffer may
interfere with subsequent input

e After an output operation, the buffer need not be
cleared since subsequent output data will flush the
previous buffer contents

INPUT / OUTPUT FUNCTIONS

FORNATTED NPUT
Ex scan!

FORMATTED OUTPUT

Ex gt
NPUT OUTUT
FUNCTIONS
UNFORNATTED NPUT
Ex getchar

UNFORMATTED omen
)

UNFORMATTED OUTPUT
Ex putchar
pukch
pum

Function
getchar()
getche()

getch()

putchar()
gets()
puts()

" Unformatted /O

e Should include the standard I/O header file #include
<stdio.h> for input output operations

Operation
Reads a character from the keyboard; usually waits for carmage retum.

Reads a character with echo; does not wait for carnage return; not
defined by Standard C, but a common extension.

Reads a character without echo; does not wait for camage refum; not

defined by Standard C, but a common extension.

Writes a character to the screen.

Reads a smng from the keyboard.
Writes a string to the screen.

Character-Based I/O

o getch() is used to accept a character from standard
input
By default, it accepts characters from the keyboard,
and returns the character

e putch() displays the character on to standard output
It takes one argument, namely, the character to be output

o fflush() clears the buffer associated with the
particular device

Example

/ #include <conio.h> \

#include <stdio.h>
main()
{
char ch;
ch = getch();
fflush(stdin);
putch(ch);
}

- /

getchar() and putchar()

e A macro call is similar to a function call. It consists of a
macro name followed by a comma-separated argument
list enclosed in a pair of parentheses.

e The macro getchar() by default accepts a character from
the keyboard and returns the character.

* The macro putchar() is used to display the character on to
standard output.

It takes the character to be output as an argument.
ch = getchar();

fflush(stdin);
putchar(ch);

Example

i
i

finclude <stdic
finclude <ctype

int main{wvoid)
{

char ch;

printf("Enter some text
do |
ch

getchari):

if{islower(ch)) ch =

else ch

putchar (ch) ;
v while ich !'= !

)

T
-

return

tolowsr(ch);

itype a period to quit).hn

toupper (ch) ;

L

j "
F

String-Based |/O

o gets() accepts as a parameter, a string variable, or
a string literal (enclosed in double quotes) from
the keyboard.

e puts() accepts a string variable, or a string literal
to be displayed to standard output.

After displaying the output, the puts() function causes
the cursor to be positioned at the beginning of the next
line.

" Example

ﬁmlude <stdio.h> \
#include <conio.h>

main()

{
char str[11];

puts("Enter a string of maximum 10 characters");

gets(str);
fflush(stdin);
puts(str);

-~ /

e

Formatted Console |/0O

e The functions printf() and scanf() perform formatted
output and input—they can read and write data in
various formats that are under your control

e printf() function writes data to the console

e scanf() function, its complement, reads data from the
keyboard

e Both functions can operate on any of the built-in data
types, plus null-terminated character strings

Formatted Input and Output

Keyboard Standard Input File

Memory

k Monitor Standard Output File

g

e |Input
scanf(“%d”,&a); -Gets an integer value from the user
and stores it under the name a

scanf(“%d %d’, &x, &y); - 2?7

e Qutput
printf(“%d”,a); - Prints the value present in variable
a on the screen

printf(“Enter xy :); - ?27??

Formatted Output - printf()

< printf(...) -
2 3 4

. Integer

Text Stream

Monitor

Data destination
Program

e

 printf Function
» printsinformation to the screen

» requires two arguments

= control string
» Containstext, conversion specifiers or both
« |dentifier to be printed

s Example
double angle = 45.5;
printf (“Angle = %.2f degrees \n”, angle);
Qutput:

Angle = 45.350 degrees

the number of characters written or a negative value if an error occurs

N

#include <stdio.h>
main()
{
inti=0;
i=printf("abcde\n");
printf("total characters printed %d\n",i);
}

\)

Conversion Specification

Width

e

-

Examples...

o printf(“%d%c%f”, 23, 'z, 4.1);

237.4.100000

|
o printf(“%d %c %f”, 23, 'z, 4.1);
23 Z 4.100000

imt i I
float =,

a = 10

0 = 20

= = 43 _28
wvw = L5527

primtf {"™i
= Output:

1 = 10, j

W
92 fF
O
= %d, G4 = %c = = %f
= 20 = = 43 _ 289200

Variable Type Output Type Specifier

Integer Values

short, int int %1, %d
int short %h1, %hd
Tong Tong %11, %ld
int unsigned int %U

int unsigned short %hu
Tong unsigned Tong %lu

Floating-Point Values

float, double double %t, %e, %E, %g, %G
Tong double Tong double %LF, %Le, %LE, %Lg, %LG

Character Values

char char %C

N

e

printf() in brief...

g

Output of -145

Specifier | Value Printed
i -145

%4 -145

%3 -145

%6 145

%-6i 145

%) 145
%-5 45

Output of 157.8926

Specifier | Value Printed

g 15 7. =22000

% 6, 2f 157.a3

% 7.3f 157.393

% 741 15 7. =020

% 7.0f 15 7 a0200

e 1.5 7a020e+02
K % . 3E 1.5 /402

e

Short integer-2 print positions

%4d Integer-4 print positions
%7.2 Float -7 print positions nnnn.dd
%10.3Lf Long double 10 positions nnnnnn.dd

int sum = 65;
double average = 12.368;
char ch = ‘b’;

Show the output line generated by the following :

printf ("Sum = %5i; Average =
printf ("Sum = %41 \n Average
printf ("Sum and Average \n\n
printf("Character is %c; Sum

printf("Character is %1; Sum

$F7.1f \n",
$8.4f \n",
td %.1f \n",

sum, average):;

sum,
sum,
is %c \n", ch,

ch,

s1m) [

is %i \n", sum) ;

average) ;

average);

™

Solution:
Sum= 65;Average= 124
Sum= 65
Average = 12.3680

Sum and Average
6512.4

Characteris b; Sum is A
Characteris 98; Sum is 65

Flags with printf()

- Trailing zeroes

+ sign, either + or — will preceed

0 leading zeros

#0 octal data items to be preceeded by 0
#x hexa data items to be preceeded by Ox
#Hf decimal point to be present

e decimal point to be present

#g decimal point to be present, prevents truncation
of trailing zeroes

e

Escape sequences

* You can represent any member of the execution character
set by an escape sequence

e These sequences are primarily used to put nonprintable
characters in character and string literals

e To put such characters as tab, carriage return,
and backspace into an output stream

Cincludes the backslash character - an escape sequence - to
display some special characters

¢#include <stdic.h>

int main({vold)

{

printf(''\n\tThis 1is a test."};

return O:

The program outputs a new line and a tab
and then prints the string This is a test.

" Tab ‘\t’ and NewLine ‘\n’ Character

o printf(“%d\t%c \t%s.1f\n’, 23, 'Z), 14.2);
printf(“%d\t%c \t%s5.1\n”, 107, 'A’, 53.6)
printf(“%d\t%c \t%s5.1\n”, 1754, 'F, 122.0);
printf(“%d\t%c \t%s5.1f\n”, 3, 'P} 0.1);

23 Z 14.2

107 A 53.6

1754 F 122.0
3 P 0.1
o printf(“The number %d is my favorite number.’, 23);
The number 23 is my favorite number.

Examples

e Another common escape sequence is \", which
"
represents the " character:

printf("\"Hello\"");
"Hello!"

To print a single \ character, put two \ characters in
the string:

printf("\\");
\

Code Meaning
b Backspace
f Form feed
'n INew line
T Camage return
it Honzontal tab
' Double quots
Single guote
Backslash
W Vertical tab
‘a Alert
Question mark
N Octal constant (where N 15 an octal constant)
N Hexadecimal constant (where N 15 & hexadecimal constant)

/

4 N

Things to Remember!!!

e Compilers aren’t required to check that the number of
conversion specifications in a format string matches the
number of output items.

o printf("%d %d\n", i);

Too many conversion specifications

o printf("%d\n", i, j);

Too few conversion specifications

o printf("%f %d\n", i, x);
/*** WRONG ***/

- /

" Time to Test Your C Skills
o printf(“%d %d %d\n”, 44, 55)

44 550
//Three conversion specifications but only two
values

e printf(“%d %d\n”, 44, 55, 66)

44 55
/ /printf ignores the third value

Formatting Input - scanf()

e

s scanf Function
s inputsvalues from the keyboard

s required arguments

» control string

» memory locations that correspond to the specifiers in the control
string

s Example:
double distance;

char unit length;
scanf ("81f %c", s&distance, s&unit length);

« [tIsvery important to use a specifier that is appropriate for the data type
of the variable

e scanf() is the general -purpose console input routine. It
can read all the built-in data types and automatically

convert numbers into the proper internal format.

escanf() returns the number of data items successfully
assigned a value.

If an error occurs, it returns EOF.

*The control_string determines how values are read into

the variables pointed to in the argument list.

5| Flag | Maximumwidth | | Sie | Code

There is no precision, if found(it goes to error state)

N

g

™
You Must Pass scanf() ADDRESSES

o All the variables used to receive values through scanf{()
must be passed by their addresses.

e This means that all arguments must be pointers.

* To read an integer into the variable count:
scanf("%d", &count);

e Toread a string into the character array str:
scanf("%s", str);

In this case, str is already a pointer and need not be
preceded by the & operator.

/

Example

Sample input:
® 1-20 .3 -4.0€3

/* scanf will assign 1, —20, 0.3, and —4000.0 to i, j, X,
and y, respectively */

Code Meaning

Yea Feads a floating -point value (C99 only).

Yer Feads a single character.

Yed Feads a decimal integer.

Vel Feads an mteger in either decimal octal. or hexadecimal format.
Yo£ Feads a floating -point mumber.

Vef Feads a floating -point number.

Yeg Feads a floating -point number.

Vel Feads an octal munber.

Va3 Feads a sinng.

YeX Feads a hexadecimal number.

Yep Feads a pointer.

Yen Fecerves an mteger value equal to the number of characters read so far.
Yeu Feads an unsigned decimal integer.

el] Scans for a set of characters.

T Feads a percent sign.

~ Example
Try specifying field width with scanf..........

inta, b, c;
scanf(“%3d %3d %3d”, &a, &b. &c);

Inputs:

1 2 3
123 456 789
123456789

1234 5678 9

Assignment suppression character: “*d”
scanf(“%d %*d %d”, &a, &b, &c);

I/p:

2 3 4

2 isread and assigned to a

3 isread and but notassignedtob
4 isread and assigned to ¢

EOF

e White spaces, width specifications, EOF
,errors(Invalid Characters),stops the scanf function.

 In ASCII, whitespace characters are space (')

e If the user signals that there is no more input by
keying EOF,then scanf terminates the input process

e If scanf encounters an invalid character when it is
trying to convert the input to the stored data type, it
stops

e Finding a non-numeric character when it is trying to
_ read a number

EOF

e As it searches for a number, scanf ignores white-space

(space, horizontal and vertical tab, form-feed, and new-
line)

A call of scanf that reads four numbers:

scanf("%d%d%f%f", &i, &j, &x, &y);
e The numbers can be on one line or spread over several lines:
1

-20 .3

-4.0€3

scanf sees a stream of characters (\n represents new-line):
e *1\n-20°°*.3\n***-4.0e3\n

* SSISITISSSITSSSSITITIT (S = skipped; r = read)

_ * scanf “peeks” at the final new-line without reading it.

/

e

N

More Examples

How do you call using scanf()?

scanf("%d%d%f%f", &i, &j, &x, &y);

scanf would process the new input AS FOLLOWS:
— %d. Stores 1 into i and puts the - character back.
— %d. Stores —20 into j and puts the . character back.
- %f. Stores 0.3 into x and puts the - character back.

— %f. Stores —4.0 x 103 into y and puts the new-line
character back.

4 N
Time to test your C Skills

°* Inta=o0;
scanf(“%d”, a);
printf(“%d\n”, a);

input: 234
output: o
Why Output is 0?

/* & is missing in scanf(..., &a);

What is printed is the original contents of the variable, in
this case 0*/

N /

Can you Guess the Output???

/* Bndds two fractions */
#include <stdio.h>

int main(void)
{

int numl, denoml, numZ, denomZ, result num, result denom;

printf ("Enter first fraction: ");:
scanf ("$4d/%d", &numl, &d=enoml) :

printf ("Enter second fraction: ");
scanf ("$d/%4", &numZ, &denoml) ;

result num = numl * denomZ + numZ *denoml:;
result denom = denoml * denom:;
printf ("The sum is %4d/%d\n", result num, result denom)

return 0;

OUTPUT Enter first fraction: 5/6
Enter second fraction: 3/4
The sum is 38/24

Code

Format

Hexadecimal output in the form Oxh hhilhp+d (C99 only).
Hexadecimal output in the form 0Xh hhbhhP—d (C99 only).
Character.

Signed decimal integers.

Signed decimal integers.

Scientific notation (lowercase).

Scientfic notation (uppercass E).

Decimal floating point.

Uszes %ee or %of, whichever 15 shorter.

Uzes %k or %oF. whichever 13 shorter.

Unsigned octal.

String of characters.

Unsigned decimal mtegers.

Unsigned hexadecimal (lowercase letters).

Unsigned hexadecimal (uppercase letters).

Displays a pointer.

The associated argument must be a peinter to an integer. This
specifier causes the number of characters written (up to the
pomt at which the %mn 15 encountersd) to be stored m that
mieger.

Prnts a % s1gn.

