
ASCII NEWSLETTER

ASSOCIATION OF STUDENTS OF COMPUTER SCIENCE FOR
INFORMATION INTERCHANGE

 2021-22 | ISSUE 1

Upcoming Programming
Languages

PAGE 12

WELCOME!
Language has been and st i l l i s the primary

means of communication and human
interaction. And when you look at a computer,

you’l l f ind i t ’s not so much different . There are
many pieces of hardware and software that need

to communicate with each other. But a
computer is a machine which understands

nothing but 1s and 0s , the combination of which
creates meaning. That’s why the creation

of programming languages was a revolutionary
step that took this f ie ld to another level .

And in this issue of ASCII, we go further to
extend our understanding on Programming

Languages.

The Future of Programming
Languages

PAGE 14

Insane Programming
Languages

PAGE 15

Extras
PAGE 17

WHAT'S INSIDE
THIS ISSUE

What is a Programming
Language?

PAGE 4

Types of Programming
Languages

PAGE 5

Current Popular
Programming Languages

PAGE 10

Department of Computer Science and Engineering

Vision:
To be acclaimed internationally for excellence in teaching and research in Computer Science & Engineering, and in fostering a
culture of creativity and innovation to responsibly harness state-of-the-art technologies for societal needs.

Mission:
Mission 1: To assist students in developing a strong foundation in Computer Science and Engineering by providing analytical,
computational thinking and problem solving skills.
Mission 2: To inculcate entrepreneurial skills to develop solutions and products for interdisciplinary problems by cultivating
curiosity, team spirit and spirit of innovation.
Mission 3: To provide opportunities for students to acquire knowledge of state-of-the-art in Computer Science and Engineering
through industry internships, collaborative projects, and global exchange programmes with Institutions of international repute.
Mission 4: To develop life-long learning, ethics, moral values and spirit of service so as to contribute to the society through
technology.
Mission 5: To be a premier research-intensive department by providing a stimulating environment for knowledge discovery and
creation.

Programme Educational Objectives (PEOs)

Programme Outcomes (PO’s) and Programme Specific Outcomes (PSO’s)
PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering
specialization to the solution of complex engineering problems.
PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated
conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3: Design and development of solutions: Design solutions for complex engineering problems and design system components or
processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.
PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of
experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including
prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to Assess societal, health, safety, legal and
cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental
contexts, and demonstrate the knowledge of and need for sustainable development.
PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in
multidisciplinary settings.
PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at
large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.
PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and
apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in
the broadest context of technological change.
PSO1: Adopt Standard Practices: Ability to design and engineer, innovative, optimal and elegant computing solutions to interdisciplinary
problems using standard practices, tools and technologies.
PSO2: Research and Innovation: Ability to learn emerging computing paradigms for research and innovation

The Computer Science & Engineering Program graduates will
PEO1: Strive on a global platform to pursue their professional career in Computer Science and Engineering.
PEO2: Contribute to product development as entrepreneurs in inter disciplinary fields of engineering and technology.
PEO3: Demonstrate high regard for professionalism,integrity and respect values in diverse culture, and have a concern for society and
environment.

 2 0 2 0 | I S S U E 5

CONTENTS

4

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 3

W H A T I S A
P R O G R A M M I N G L A N G U A G E ?

5 D I F F E R E N T P A R A D I G M S O F
P R O G R A M M I N G L A N G U A G E S

T H E F U N C T I O N A L
P R O G R A M M I N G P A R A D I G M7

D O M A I N S P E C I F I C
L A N G U A G E S9

C U R R E N T L Y P O P U L A R
P R O G R A M M I N G L A N G U A G E S .1 0

U P C O M I N G
P R O G R A M M I N G L A N G U A G E S1 2

1 4
1 5
1 7
24

T H E F U T U R E O F
P R O G R A M M I N G L A N G U A G E S

S O M E I N S A N E
P R O G R A M M I N G L A N G U A G E S

N A A C A C C R E D I T A T I O N ,
N E W F A C U L T Y , M T E C H
P R O J E C T S , W O R K S H O P S

A R T C O R N E R &
P H O T O G R A P H Y

WHAT IS A
PROGRAMMING

LANGUAGE?
Compiled by Mihika Shrivastava

A U G . 2 0 2 0 | V O L . 2 9

Computers today, are fundamentally the same machines that they were about 30 years ago.
They are still electronic devices (on a majority basis, though some of them are non-electronic),
primarily composed of transistors. Transistors are simply an on/off switch. So when
hundreds/thousands of these on/off switches are combined, we get a computer.
Now, a computer uses Binary code (that's the 0s and 1s) to instruct these switches on whether
they should turn on (1) or turn off (0). Each transistor receives a 0 or 1, and with thousands of
them working at once, computing can be done.
But unfortunately, attempting to make an entire computer work by manually typing a number
for each transistor would take an incredible amount of time, considering that even the smallest
computer as of 2018 has in the order of 100,000 transistors, and one of the highest transistor-
count machines out there today have about 400 trillion of them.

Now even as a novice, if one pays any attention to the technology world, they've undoubtedly
heard the terms ‘coding’ and ‘programming’, dozens of times. This is where they come in.
Instead of having to manually type, to control each switch, we (humans; programmers) have
developed high-level programming languages to help speed up the process. Instead of
addressing each transistor individually, we address entire sections of them to perform a
specific task.

So a programming language is essentially the vocabulary and the grammar for getting a
computer or any other computing device for that matter, to perform a specific set of tasks.
They are way more than just colourful text. There are about 700 different programming
languages out there, some are still used, some are not.
Each language is different from the others in one way or another. They are suited for different
purposes across different industries. While some may be used to solve problems or interpret
data, others may be used to create apps or video games or do animation.
The possibilities of possible applications are many and so are the choices for the programming
languages used to implement these.

careerkarma.com
References:

 A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 4

A U G . 2 0 2 0 | V O L . 2 9

Programming Paradigms!
Sounds very strange, isn’t it!? The term refers to
the style of programming. It is unspecific to any
particular programming language, rather it tells
us the way to program. There are quite a lot of
programming languages that are well known,
but all of them are supposed to follow some
strategy. Apart from the varieties of existing
programming languages, there are also lots of
paradigms that are responsible to fulfil each and
every demand.

Programming paradigms are majorly classified
into Imperative Programming paradigm and
Declarative Programming paradigm.
Imperative, being the oldest programming
paradigm, works on the basis of changing the
program state by using assignment statements. It
follows a step-by-step procedure and its main
goal is to achieve its goal. This paradigm
usually contains several statements, and the
result is stored after the execution of all the
statements.

Procedural Programming Paradigm:

The declarative Programming paradigm refers
to the style of building programs that express
the logic of a computation without minding its
control flow. The focus of this type is to know
what has to be done rather than how.

Imperative Programming Paradigm:
Imperative Programming Paradigm can be
broadly divided into three categories:
Procedural, Object-Oriented and Parallel
Processing.

1.
This type of paradigm contains a series of
computational steps to be carried out. Any
procedure in this can be called at any point of
the program’s execution. The code can be
reused whenever required.

2. Object-Oriented Programming:
Object-Oriented programming uses objects
rather than functions and logic to organise and
manipulate data. More emphasis is laid on data
and this helps to handle many kinds of real-life
problems in today’s scenario.

DIFFERENT PARADIGMS
OF PROGRAMMING

LANGUAGES.

Compiled by B. Balanisha

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 5

A U G . 2 0 2 0 | V O L . 2 9

Logic Programming Paradigm:

3. Parallel Processing Approach:
This paradigm refers to the processing of
programs by diving them into an indefinite
amount of smaller programs and distributing
them to multiple processors in order to reduce
the run time.

Declarative Programming Paradigm:
The declarative programming paradigm can be
broadly classified into three categories namely
logic, functional and database.

1.
The programs in this paradigm are rather written
in form of facts and rules to implement the
logic. The execution of these programs would be
as same as a mathematical proof.

2. Functional Programming Paradigm:
This paradigm mainly deals with mathematical
functions and it is language independent.
Execution of mathematical functions is the main
principle.

geeksforgeeks.org/introduction-of-programming-
paradigms/
cs.lmu.edu/~ray/notes/paradigms/
freecodecamp.org/news/what-exactly-is-a-programming-
paradigm/

References:

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 6

3. Database / Data-driven Programming
Paradigm:
This paradigm mainly deals with the storage and
manipulation of data. A good approach towards
this paradigm is very crucial to business
organisations.

A U G . 2 0 2 0 | V O L . 2 9 A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 7

THE FUNCTIONAL
PROGRAMMING PARADIGM.

Functional programming is a programming
paradigm that attempts to bind each and
everything in pure mathematical functions. It
is a declarative type of programming style
that aims at what to solve rather than how to
solve. Clojure, Common Lisp, Erlang,
Haskell, and Scala are some of the
notable programming languages that follow
the functional programming approach. The
programming paradigm is based on Lambda
Calculus.

LAMBDA CALCULUS
Lambda Calculus was developed by Alonzo
Church in the 1930s as a part of his research
into the foundation of mathematics. It is a
framework for studying computations with
functions. The lambda calculus makes use of
expressions instead of statements. Unlike a
statement executed to assign variables, the
evaluation of an expression produces a value.
Lambda calculus forms the basis of almost all
of the functional programming languages.
Anything that can be solved using lambda
calculus is computable. In terms of its
computational ability, lambda calculus is
similar to the Turing machine that laid the
foundation for the imperative style of
programming.

Are Immutable, wherein one always
produces the same output with the same
arguments disregarding other factors.
Functions are deterministic. Pure functions
give some output and do modify any
argument or global variables i.e. they have
no side-effects
Since pure functions have no side effects or
hidden I/O, programs built using functional
paradigms are easy to debug. Moreover,
pure functions make writing concurrent
applications easier.
When the code is written using the
functional programming style, a capable
compiler is able to:

FUNCTIONAL PROGRAMMING
CONCEPTS:
Pure Functions

 a) Memorize the results
 b) Parallelize the instructions
 c) Wait for evaluating results

Compiled by A. Shivaani

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 8

In the functional programming paradigm,
there are no loops. Instead, functional
programming languages rely on recursion for
iteration.
Recursion is implemented using recursive
functions, which repetitively call themselves
until the base case is reached.

 Variable values once defined in a functional
programming language shouldn't be changed
throughout the execution of the program. It
assures that the same language expression
gives the same output.
Functional programs don’t have any
assignment statements. For storing additional
values in a program developed using
functional programming, new variables must
be defined, whose state is constant
throughout the program.
 Referential transparency eliminates even the
slightest chances of any undesired effects
due to the fact that any variable can be
replaced with its actual value during any
point in the program execution.

Functions in the functional programming
style are treated as variables. Hence, they are
first-class functions. These first-class
functions are allowed to be passed to other
functions as parameters or returned from
functions or stored in data structures.
Variables are immutable i.e. it isn’t possible
to modify a variable once it has been
initialized. Though we can create a new
variable, modifying existing variables is not
allowed..·

Recursion

Referential Transparency

First-Class and can be Higher-Order

The immutable nature of variables in a
functional programming language benefits in
the form of preserving the state throughout
the execution of a program.

Pure functions don’t change any states and
are entirely dependent on the input.
The return value given by such functions is
the same as the output they give.
Due to the nature of pure functions to avoid
changing variables or any data outside it,
implementing concurrency becomes
efficacious.
Pure functions take arguments once and
produce unchangeable output. Hence, they
don’t produce any hidden output. They use
immutable values, making debugging and
testing easier.

Immutable values combined with recursion
might lead to a reduction in performance.
Though writing pure functions is easy,
combining the same with the rest of the
application as well as the I/O operations is
tough.
Writing programs in recursive style in place
of using loops for the same can be a daunting
task.

ADVANTAGES

DISADVANTAGES

geeksforgeeks.com
guru99.com

References:

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 9

SQL for databases.
HTML for web layouts.
CSS for web layout styling.
DOT is for defining graphs.

DSL's are languages created to perform
assigned tasks like solving programs, all within
a specific domain.

Let's try to understand with an example:
Suppose you wish to open a capped bottle.
Now, there are several ways how you could go
about doing that. Maybe you could use your
teeth, or maybe you could pry the cap off with
a fork or a spoon. But these ways are hard and
may not always work. But using the actual
tool- a bottle opener is bound to work.

Similarly, when it comes to programming
languages- Java, Visual Basic, C/C++ are all
general programming languages (GPL), which
can be used for a variety of purposes. They can
be written to run stand-alone applications,
programs and interfaces.

But there are situations where general
programming language just won't work. Hence,
we have DSLs. A DSL focuses on one task or
is built to work on one platform.

Here are some examples for DSL's:

When it comes to differentiation, the line
between domain-specific languages
and scripting languages is somewhat blurred.
However, domain-specific languages often lack
low-level functions for filesystem access,
interprocess control, and other functions that
characterize full-featured programming
languages, scripting or otherwise. Many domain-
specific languages do not compile to byte-
code or executable code, but to various kinds of
media objects. For example, GraphViz exports
to PostScript, GIF, JPEG, etc.

So all this does lead to the question. Why should
one choose a DSL over a GPL?
Well, though a GPL is quite versatile in its uses,
a DSL can be analyzed much better. DSLs often
tend to be safer and whenever there are errors,
those errors tend to be specific to the domain, so
they are easier to understand.
This also means that interpreting DSLs is easier,
so bringing them to a new platform would be
quite easy.
But most importantly, DSLs only focus on the
important concepts by enabling abstraction,
hence we're left only with the information that
truly matters.

DOMAIN SPECIFIC
LANGUAGES

Compiled by Likhitha S. & Mihika Shrivastava

tomassetti.me/domain-specific-languages/
References:

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 0

Counting the number of times the language
name is mentioned in web searches and
YouTube searches.

It is quite difficult to give a definite answer to
the question 'Which is the most popular
programming language out there today?'
because popularity depends upon the usage, and
the usage depends upon the context.
A language may occupy the greater number of
programmer hours, or a different one may have
more lines of code, or it may utilize the most
CPU time, and so on. Further, there are some
languages very popular for only particular kinds
of applications, like Fortran in computational
science and engineering and C in embedded
applications and operating systems.

So there are various methods that have been
proposed to measure the popularity of a
language, each subject to a different bias. A few
methods include:

Counting the number of job advertisements
that mention the language.
 The number of books sold that teach or
describe the language.
Estimating of the number of existing lines of
code written in the language – which may
underestimate languages not often found in
public searches.

Maintained by: TIOBE Company based in
Eindhoven, Netherlands.
The index is updated once a month.
Popular search engines such as Google, Bing,
Yahoo!, Wikipedia, Amazon, YouTube and
Baidu are used to calculate the ratings.

So based on these methods, several indices have
been published over the years. Here are a few:

TIOBE PROGRAMMING COMMUNITY
INDEX

CURRENTLY POPULAR
PROGRAMMING LANGUAGES.

Compiled by Mihika Shrivastava

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 1

PYTHON
Develop different applications like web
applications, graphic user interface based
applications, software development
applications, scientific and numeric
applications
Network programming.
Games and 3D applications.

Allows procedural programming for
intensive functions of CPU and provide
control over hardware.
This language is very fast because of which it
is widely used in developing different games
or in gaming engines.
C++ is mainly used in developing the suites
of a game tool.

Used in the distributed environment of the
internet.
It is the most popular programming language
for Android applications and is also among
the most favoured for the development of
edge devices and the internet of things.

Web Development & Web Applications
Presentations & Server Applications
Games, Art, Smartwatch Applications.

Used to develop Static websites or Dynamic
websites or Web applications.

Applications of a few of these languages:
1.

 2. C++

 3. Java

 4. JavaScript

5. PHP

TIOBE index is not for determining the best
programming language but to check whether
one's programming skills are still up to date
or not.
The Top 5 Programming Languages as per
the TIOBE index (as of April 2020) are:

Ranking by GitHub.
It uses Google search activity to rank
language popularity. It focuses on people
searching for tutorials in the respective
languages as a proxy for popularity.
The Top 5 programming languages currently
as per PYPL Popularity are:

They rank the popularity by weighting &
combining 11 metrics from 8 sources:
CareerBuilder, Google, GitHub, Hacker
News, the IEEE, Reddit, Stack overflow &
Twitter
The Top 5 programming languages as IEEE
Spectrum currently are:

1. Java
2. C
3. Python
4. C++
5. C#

PYPL POPULARITY OF PROGRAMMING

LANGUAGE

 1. Python
 2. Java
 3. Javascript
 4. C#
 5. PHP

IEEE SPECTRUM

 1. Python
 2. Java
 3. C
 4. C++
 5. JavaScript

their respective official websites
wikipedia.org

References:

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 2

UPCOMING
PROGRAMMING

LANGUAGES.
Contributed by Lavanya A.

If we consider the modern human civilization as
a vehicle, then the software development
industry is the engine and programming
languages are the fuel for that engine.

The term “Modern programming language” is
ambiguous. There is a common misconception
that languages like Python and JavaScript are
modern programming languages, whereas Java
is an old one, considering in reality, all of these
languages emerged in the same period: the
1990s.

RUST
Graydon Hoare first developed Rust in 2010.
Rust is an open-source language whose
development is currently being led by Mozilla
along with many other companies and
communities. It has three primary design goals:
Safety, Speed, and Concurrency. Rust also has
several distinguishing features: The borrow
checker, composition over inheritance and
fabulous tooling.

JULIA
Julia is a dynamic, high-level programming
language that offers first-class support for
Concurrent, Parallel and Distributed Computing.

In 2018 the first stable version of Julia got
released and grabbed the attention of industries.
Julia and Python compete with each other in
many areas.

KOTLIN
Google has declared Kotlin as a first-class
language to develop Android and boosted
Kotlin’s acceptance in the community.
Furthermore, the popular Java Enterprise
framework- Spring has started to support Kotlin
in the Spring eco-system since 2017, which
further boosted its popularity. Kotlin’s
characteristics include Conciseness, Versatile
Safe, Interoperable and Tool-enabled features.

Kotlin 1.0, was released in 2016. Nearly 5 years
after its first initial release in 2011. The latest
stable release is the Kotlin 1.5.31, released in
 September 2021. Kotlin is currently used in
over ten products at JetBrains and a variety of
other companies like Amex, NBC digital,
Expedia, and Gradle.

DART
In the list made by Google, Dart stands in
second place. Dart is a general-purpose
programming language that supports objected-
oriented programming. Dart can also comply
with JavaScript.

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 3

ELIXIR
Elixir is another new language that has many
similarities to the Ruby ecosystem. It focuses on
creating high-availability, low-latency systems,
unlike the language Rails which had issues on
the same front. Elixir runs on Erlang VM which
helps it to achieve the above performance boosts.
Erlang VM has strong performance in the
telecom industry, built over 25 years.

ELM
Elm is a usability-focused functional
programming language that compiles high-
performance JavaScript. This can be used with
or without JavaScript to build a web page.
 Elm’s primary benefits compared to JavaScript
are reliability, maintainability, and programmers
delight.

techbeacon.com/app-dev-testing/5-emerging-
programming-languages-bright-future
towardsdatascience.com/top-7-modern-programming-
language-to-learn-now-156863bd1eec

References:

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 4

That will open up a whole new level of
programming language where developer can
spend much more time developing rather than
spending a tedious time on debugging.
A thread in computer science is short for a
thread of execution. Threads are a way for a
program to divide (termed "split") itself into two
or more simultaneously (or pseudo-
simultaneously) running tasks. Each language
have their own way to plan user's threads
execution, the future programming language
should allow the programmer create kernel's
threads.

Future programming languages will be model
driven and less machine based. Model-driven
attempts to capture knowledge and derive
decisions through explicit representation and
rules. For example, in a model-driven world, a
cat would be explicitly represented as a four-
legged animal, with two eyes, a nose and a
mouth that is furry (except when not) and that is
relatively small (except when not), etc. Support
for meta-data(data that provides information
about other data), static and dynamic reasoning
will become standard.

THE FUTURE OF
PROGRAMMING

LANGUAGES.
Contributed by Rohit Sharma T.

We have progressed a lot in the development of
programming languages from low-level to high-
level and we have achieved program portability,
platform independence, multi-threaded
application development, database handling,
network programming, web-based application
development, enterprise application
development, etc. We have also developed many
programming paradigms like structured
programming, object-based and object-oriented
programming and many others. Now the
question lies what would the future of
programming languages look like ?

Next generation programming languages may
contain an adaptive behavior and self-repairs
features, in which it can adapt itself to any
environment or platforms or problem (while
loop that automatically changes into for loop
when needed, etc.), whereas self-repairs refers
to a programming language that learns to
improve itself further without the need of human
interference (debugging itself and retrieve errors,
where repairs can be perform automatically),
respectively.

techrepublic.com/article/the-future-of-programming-languages-what-to-expect-in-this-new-infrastructure-as-code-world/
francescolelli.info/programming/the-present-the-past-and-the-future-of-programming-languages-a-historical-perspective/

References:

SOME INSANE
PROGRAMMING

LANGUAGES.
Contributed by Rohit Sharma T.

LOLCODE is made up of lolspeak, the ‘language’ used by
lolcats. The language was designed by Adam Lindsay in
2007, a researcher at Lancaster University’s Computing
Department. The language isn’t as complete as traditional
ones, with syntax and operator priorities not clearly defined
but there are functioning compliers for that available out
there. The hilarity and cuteness of the language more that
makes up for this though. Just take a look at the ‘Hello
World!’ code. ----->

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 5

 Befunge was developed by Chris Pressey in 1993, with the
aim of creating a language that would be as hard to compile
as possible. He does this by implementing self-modifying
code and having the same instruction being executed in four
different ways, not to mention the instruction set itself.
However, a number of compilers were eventually created.
Just take a look at the ‘Hello World!’ code. ----->

Here is a programming language made entirely out of one-
liners from movies featuring Arnold Schwarzenegge,
classics such as Terminator, Predator and Total
Recall. ArnoldC was created by Lauri Hartikka, who
swapped out standard commands with their equivalent
Arnold one-liner. Example includes False and True, which
becomes "I LIED" and "NO PROBLEMO", respectively.
Here’s how a "Hello World!" code would look like: ----->

L O L C O D E

B E F U N G E

A R N O L D C

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 6

This is inspired by the play of Shakespeare, the Hamlet . Just
take a look at the ‘Hello World!’ code. ----->

SHAKESPEARE

S o u r c e s :

h t t p s : / / w w w . h o n g k i a t . c o m / b l o g / b i z a r

r e - i n s a n e - p r o g r a m m i n g - l a n g u a g e s /

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 7

Amrita Vishwa Vidyapeetham was accredited (Cycle-3) with an A++ the highest grade by
the National Assessment and Accreditation Council (NAAC).
This put Amrita Vishwa Vidyapeetham under Category 1 Autonomy Higher Education
Institution in India.

National Assessment and Accreditation Council (NAAC)
A U G U S T 2 0 2 1

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 8

Amrita Vishwa Vidyapeetham emerged as the fifth best university in the National
Institutional Ranking Framework (NIRF) Ranking 2021 for Indian Universities.
Amrita has been adjudged as one of the "Top 10 Universities in India" for the fifth
consecutive year. In the overall category, Amrita secured 12th place moving up one place
from last year's position.

The list of the best universities is prepared based on various parameters such as teaching,
learning & resources, research & professional practices, graduation outcomes, outreach &
inclusivity, placement records and perception.

National Institutional Ranking Framework (NIRF)
S E P T E M B E R 2 0 2 1

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 1 9

Mr. Chakravartula Raghavachari is an Assistant
Professor in the Department of Computer Science and
Engineering at Amrita School of Engineering, Amrita
Vishwa Vidyapeetham, Coimbatore.

He did his Masters in Remote Sensing and Wireless
Sensor Networks from the same university. He
obtained his B.E in Computer Science and Engineering
from RMD Engineering College, Anna University,
Chennai.

NEW FACULTY IN THE DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

He is currently pursuing PhD from the Center for Computational Engineering and
Networking (CEN), Amrita Vishwa Vidyapeetham, Coimbatore.
He is working in the field of Computer Vision and Robotics.
Before joining Amrita as Assistant Professor, he had been in AMuDa lab at Amrita
School of Engineering involved as Junior Research Fellow for a DST funded project.
w w w . a m r i t a . e d u / f a c u l t y / c h a k r a v a r t u l a - r a g h a v a c h a r i

https://www.amrita.edu/faculty/chakravartula-raghavachari

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 0

Reg. No.: CB.EN.P2CSE19018
Name: Raghul S
Guide Name: Dr.G.Jeyakumar
Title: Investigations on implementing distributed evolutionary algorithm framework
with a fault-tolerance mechanism in cloud infrastructure

Reg. No.: CB.EN.P2CSE19022
Name: Sharmila S
Guide Name: Mr. Sabarish B
Title: A Efficient Fuzzy Trajectory Clustering algorithm (EFTCA) for electing
optimum clusters

Reg. No.: CB.EN.P2CSE19007
Name: Chanchal M
Guide Name: Ms. Malathi P
Title: Image data hiding scheme using deep neural network

OUTSTANDING PROJECT AWARDS
C O M P U T E R S C I E N C E E N G I N E E R I N G M T E C H 2 0 1 9 - 2 0 2 1

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 1

On 25th September 2021, The Department of Computer Science and Engineering,
along with the Alumni Coordination Team, hosted a talk in the domain of NLP-
Language Modelling using Deep Learning.

The Speaker was an alumnus of our university,
Ms Anjali Ragupathi (CSE, B.Tech 2017-2021,
CB.EN.U4CSE17307).
During her undergraduate studies, she was a
research intern at the 'Namaskar with Love
Foundation', and a teaching assistant for
undergraduate lab courses.
Her areas of interest include Natural Language
Processing (NLP) and Computational Linguistics.

The talk was attended by UG-PG students, research scholars and faculty members
of the CSE department.
Mr Aswin K proposed the vote of thanks.

Coordinators:
Dr Manu Madhavan
Ms Abirami K

Links to the talk:
Part-1
Part-2
Presentation link

LANGUAGE MODELLING USING DEEP LEARNING
A T A L K C O N D U C T E D B Y C S E D E P A R T M E N T &

T H E A L U M N I C O O R D I N A T I O N T E A M

The talk focused on the Evolution of Natural Language
Processing from basic statistical models to neural language
models.
Various deep learning models such as RNN, LSTM, Encoder-
Decoder, and Transformers were discussed in great detail. The
talk also pointed out the ethical issues with respect to neural
language models.

https://web.microsoftstream.com/video/97b18792-77ee-485d-aff6-91405fa89a02
https://web.microsoftstream.com/video/7e620072-a106-4d96-a90e-3facae69cb78
https://amritavishwavidyapeetham-my.sharepoint.com/:b:/g/personal/m_manu_cb_amrita_edu/EboKcj2b5NFAnVkKUzA821sBzKQHY7MVmbB5T9_ubbgo3g?e=6cbkzd

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 2

BASIC FLUTTER DEVELOPMENT
C O U R S E O V E R V I E W

Faculty: Dhanya N.M.
www.amrita.edu/faculty/nm-dhanya

The course started on the 7th
of June 2021, right after the
Endsem exam of the higher
semester students.
The course was open for CSE
students of 2nd, 3rd and final
years.
Around 170 students
registered for the course
among which two students
were from other departments
who registered purely based
on their interests.
The course was offered on all
weekdays (Monday to Friday)
from 6.00 PM to 7.00 PM.

30 lecture hours were conducted which covered all basic concepts and widgets of
flutter. The course was conducted in the pattern of regular pop-quizzes based on the
topics covered and weekend assignments with the concepts covered and some topics to
explore.
From the feedback, we have gathered that the students immensely enjoyed the
weekend assignments, which encouraged them and provided them with an opportunity
to further explore Flutter's widgets and their properties.

https://www.amrita.edu/faculty/nm-dhanya
https://www.amrita.edu/faculty/nm-dhanya
https://www.amrita.edu/faculty/nm-dhanya
https://www.amrita.edu/faculty/nm-dhanya

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 3

(Hey there, software world.)
Lead and innovate and ponder more
Compute, analyse, program, score
Pandas, Python or any such brute
Supervised or unsupervised, I'll be there for you.

(Hey there, bankers!)
Modelling, predicting, managing and more
Cost and revenue, allocate both
Segment, recommend or develop for you
Data driving you bonkers? I'll be there for you.

(Hey there, hospitals.)
Process, recognise or interpret your image
Analyse, correlate or infer from your lineage
Predict and interpolate, for a healthier you
IoT or Hadoop, I'll be there for you.

Hey there, automation!
Decision, prediction, processing and more
Analyse, Visualise and plenty such in store
PCA, K-Mean, Cluster, Neural, NLP
As a Data Scientist, I'll always be there for you!

THE WORLD OF DATA SCIENCE
- - - - - - - - - - - - - - - - P O E M - - - - - - - - - - - - - - - -

Poem by:
Pragya Ananth

(CB.SC.I5DAS18027)
Fourth year, Integrated M.Sc. Data Science

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 4

P H O T O G R A P H Y
by Mihika Shrivastava

@ _ m i h i k a s

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 5

SUBMITTED BY:
MIHIKA SHRIVASTAVA

B BALANISHA
A SHIVAANI
LAVANYA A.
LIKHITHA S

C O R N E R
A R T

A S C I I 2 0 2 1 - 2 2 | I S S U E 1 | P A G E 2 6

FACULTY COORDINATORS:
DR. D. VENKATARAMAN
MS. T. BAGYAMMAL
MS. JEENA

ASCII EXECUTIVE MEMBERS:
SAI PRIYADARSHINI,
CB.EN.U4CSE17250
ADITHI NARAYANAN,
CB.EN.U4CSE18205
ROOPA VIDHYA,
CB.EN.U4CSE18143
NIRMAL K,
CB.EN.U4CSE19038
SUMITHRA S,
CB.EN.U4CSE19247
MAHIMA LOLLA,
CB.EN.U4CSE19128
 VARADHARAJAN K,
CB.EN.U4CSE19257

EDITOR:
MIHIKA SHRIVASTAVA,
CB.EN.U4CSE19439

INPUTS & SUGGESTIONS:
ADITHI NARAYAN,
CB.EN.U4CSE18205

T H A N K Y O U .

TEAM AT WORK
CONTRIBUTORS:
(CSE E)
A. SHIVAANI,
CB.EN.U4CSE19401

B. BALANISHA,
CB.EN.U4CSE19413

LAVANYA A.,
CB.EN.U4CSE19434

MIHIKA SHRIVASTAVA,
CB.EN.U4CSE19439

LIKHITHA S.,
CB.EN.U4CSE19460

ROHIT SHARMA T.,
CB.EN.U4CSE19461

